Study of Respiration Simulating Phantom using Thermocouple-based Respiration Monitoring Mask

열전쌍마스크를 이용한 호흡모사팬톰 연구

  • Lim, Sang-Wook (Department of Radiation Oncology, College of Medicine, University of Ulsan) ;
  • Park, Sung-Ho (Department of Radiation Oncology, College of Medicine, University of Ulsan) ;
  • Yi, Byong-Yong (Department of Radiation Oncology, University of Maryland School of Medicine) ;
  • Lee, Sang-Hoon (Department of Medical Physics, Kyonggi University) ;
  • Cho, Sam-Ju (Department of Medical Physics, Kyonggi University) ;
  • Huh, Hyun-Do (Department of Medical Physics, Kyonggi University) ;
  • Shin, Seong-Soo (Department of Radiation Oncology, College of Medicine, University of Ulsan) ;
  • Kim, Jong-Hoon (Department of Radiation Oncology, College of Medicine, University of Ulsan) ;
  • Lee, Sang-Wook (Department of Radiation Oncology, College of Medicine, University of Ulsan) ;
  • Kwon, Soo-Il (Department of Medical Physics, Kyonggi University) ;
  • Choi, Eun-Kyung (Department of Radiation Oncology, College of Medicine, University of Ulsan) ;
  • Ahn, Seung-Do (Department of Radiation Oncology, College of Medicine, University of Ulsan)
  • 임상욱 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 박성호 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 이병용 ;
  • 이상훈 (경기대학교 의학물리학과) ;
  • 조삼주 (경기대학교 의학물리학과) ;
  • 허현도 (경기대학교 의학물리학과) ;
  • 신성수 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 김종훈 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 이상욱 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 권수일 (경기대학교 의학물리학과) ;
  • 최은경 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 안승도 (울산대학교 의과대학 서울아산병원 방사선종양학과)
  • Published : 2005.12.30

Abstract

Purpose: To develop the respiration simulating phantom with thermocouple for evaluating 4D radiotherapy such as gated radiotherapy breathing control radiotherapy and dynamic tumor tracking radiotherapy. Materials and Methods: The respiration monitoring mask(ReMM) with thermocouple was developed to monitor the patient's irregular respiration. The signal from ReMM controls the simulating phantom as organ motion of patients in real-time. The organ and the phantom motion were compared with its respiratory curves to evaluate the simulating phantom. ReMM was used to measure patients' respiration, and the movement of simulating phantom was measured by using $RPM^{(R)}$. The fluoroscope was used to monitor the patient's diaphragm motion. relative to the organ motion, respectively. The standard deviation of discrepancy between the respiratory curve and the organ motion was 8.52% of motion range. Conclusion: Patients felt comfortable with ReMM. The relationship between the signal from ReMM and the organ motion shows strong correlation. The phantom simulates the organ motion in real-time according to the respiratory signal from the ReMM. It is expected that the simulating phantom with ReMM could be used to verify the 4D radiotherapy.

목적: 호흡동기치료, 호흡조절 방사선치료 등 호흡에 관련된 치료법의 연구를 위해 열전쌍마스크(Respiration Monitoring Mask: ReMM)를 이용한 호흡모사팬톰을 개발하였다. 대상 및 방법: 호흡신호에 따라 실시간으로 움직이는 호흡모사팬톰을 제작하였다. 열전쌍으로 환자의 호흡을 측정하고, 측정된 호흡 신호와 장기의 움직임을 비교 분석하여 팬톰의 성능을 평가하였다. 환자의 호흡 측정에는 본 원에서 개발한 ReMM을 사용하였으며, 호흡모사팬톰의 운동은 $RPM^{(R)}$(Real-time Position Management, Varian, USA)으로 측정하였다. 횡격막 부위의 장기 운동을 확인하기 위하여 X-선 투시기를 사용하였다. 결과: X-선 투시영상과 $RPM^{(R)}$으로 관찰한 장기의 움직임을 ReMM으로 측정한 호흡 신호와 비교했을 경우, 각각 표준편차 9.68% 및 8.53% 이내에서 일치하였다. 호흡 신호에 따른 팬톰 운동의 오차는 호흡진폭에 대하여 표준편차 8.52%이내에서 일치하였다. 결론: ReMM은 환자가 호흡을 하는데 불편함이 없었고, 열전쌍에서 발생되는 호흡 신호를 이용한 호흡모사 팬톰은 장기의 운동을 실시간으로 잘 모사하였다. 호흡모사전통은 호흡동기치료 등 다양한 치료법의 평가에 응용할 수 있을 것으로 기대한다.

Keywords

References

  1. Willett CW, Linggood RM, Stracher MA, et al. The effect of respiratory cycle on mediastinal and lung dimensions in Hodgkin's disease. Cancer 1987;60:1232-1237 https://doi.org/10.1002/1097-0142(19870915)60:6<1232::AID-CNCR2820600612>3.0.CO;2-F
  2. Balter JM, Ten Hanken RK, Lawrence TS, Lam L, Robertson JM. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys 1996;36:167-174 https://doi.org/10.1016/S0360-3016(96)00275-1
  3. Davies SC, Hill AL, Holmes RB, Halliwell M, Jackson PC. Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br J Radiol 1994;67:1096-1102 https://doi.org/10.1259/0007-1285-67-803-1096
  4. Henkelman RM, Mah K. How important is breathing in radiation therapy of the thorax? Int J Rad Oncol Biol Phys 1982; 8:2005-2010 https://doi.org/10.1016/0360-3016(82)90462-X
  5. Korin HW, Ehman RL, Riederer SJ. Respiratory kinematics of the upper abdominal organs: a quantitative study. Magn Reson Med 1992;23:172-178 https://doi.org/10.1002/mrm.1910230118
  6. Moerland MA, van den Bergh AC, Bhagwandien R. The influence of respiration induced motion of the kidneys on the accuracy of radiotherapy treatment planning: a magnetic resonance imaging study. Radiother Oncol 1994;30:150-154 https://doi.org/10.1016/0167-8140(94)90045-0
  7. Schwartz LH, Richaud J, Buffat L. Kidney mobility during respiration. Radiother Oncol 1994;32:84-86 https://doi.org/10.1016/0167-8140(94)90452-9
  8. Suramo I, Paivansalo M, Myllyla V. Cranio-caudal movements of the liver, pancreas, and kidneys during respiration. Acta Radiol Diagn 1984;25:129-131 https://doi.org/10.1177/028418518402500208
  9. Mageras GS, Pevsner A, Yorke ED, et al. Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys 2004;60:933-941 https://doi.org/10.1016/j.ijrobp.2004.06.021
  10. Ahn YC, Shimizu S, Shirato H, et al. Application of realtime tumor-tracking and gated radiotherapy system for unresectable pancreatic cancer. Yonsei Med J 2004;45:584-5890 https://doi.org/10.3349/ymj.2004.45.4.584
  11. Zhang T, Jeraj R, Keller H, et al. Treatment plan optimization incorporating respiratory motion. Med Phys 2004;31: 1576-1586 https://doi.org/10.1118/1.1739672
  12. Shimizu S, Shirato H, Kagei K, et al. Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys 2000;46:1127-1133 https://doi.org/10.1016/S0360-3016(99)00352-1
  13. Shimizu S, Shirato H, Ogura S, et al. Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 2001;51:304-310 https://doi.org/10.1016/S0360-3016(01)01641-8
  14. Lujan AE, Larsen EW, Balter JM, Ten Hen RK. A method for incorporating organ motion due to breathing into 3D dose calculations, Med Phys 1999;26:715-720 https://doi.org/10.1118/1.598577
  15. Ramsey CR, Scaperoth D, Arwood D, Oliver AL. Clinical efficacy of respiratory gated conformal radiation therapy. Medical Dosimetry 1999;24:115-119 https://doi.org/10.1016/S0958-3947(99)00006-0
  16. Suh YL, Yi BY, Ahn SD, et al. Aperture maneuver with compelled breath (AMC). Med Phys 2004;31:760-766 https://doi.org/10.1118/1.1650565
  17. Wilson EM, Williams FJ, Lyn BE, Wong JW, Aird EGA. Validation of active breathing control in patients with nonsmall- cell lung cancer to be treated with chartwel. Int J Radiat Oncol Biol Phys 2003;57:864-874 https://doi.org/10.1016/S0360-3016(03)00712-0
  18. Hanley J, Debois MM, Mah D, et al. Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 1999;45:603-611 https://doi.org/10.1016/S0360-3016(99)00154-6
  19. Ramsey CR, Scaperoth D, Arwood D, Oliver AL. Clinical efficacy of respiratory gated conformal radiation therapy. Medical Dosimetry 1999;24:115-119 https://doi.org/10.1016/S0958-3947(99)00006-0
  20. Mah D, Hanley J, Rosenzweig KE, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 2000;48:1175-1185 https://doi.org/10.1016/S0360-3016(00)00747-1
  21. Rosenzweig KE, Hanley J, Mah D, et al. The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2000;48:81-87 https://doi.org/10.1016/S0360-3016(00)00583-6
  22. Barnes EA, Murray BR, Robinson DM, et al. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys 2001;50:1091- 1098 https://doi.org/10.1016/S0360-3016(01)01592-9
  23. Sixel KE, Aznar MC, Ung YC. Deep inspiration nreath hold to reduce irradiated heart volume in breast cancer patients. Int J Radiat Oncol Biol Phys 2001;49:199-204 https://doi.org/10.1016/S0360-3016(00)01455-3
  24. Stromberg JS, Sharpe MB, Kim LH, et al. Active breathing control (ABC) for hodgkin's disease: Reduction in normal tissue irradiation with deep inspiration and implications for treatment. Int J Radiat Oncol Biol Phys 2000;48:797-806 https://doi.org/10.1016/S0360-3016(00)00681-7
  25. Keall PJ, Kini VR, Vedam SS, et al. Motion adaptive xray therapy: a feasibility study. Phys Med Biol 2001;46:1-10 https://doi.org/10.1088/0031-9155/46/1/301
  26. Chu SS, Cho KH, Lee CG, Suh CO. Development of Conformal Radiotherapy with Respiratory Gate Device. J Korean Soc Ther Radiol Oncol 2002;20:41-52
  27. Lee S, Lee SH, Shin DH, Yang DS, Choi MS, Kimm CY. Development of respiration gating RT technique using moving phantom and ultrasound sensor: a feasibility study. J Korean Soc Ther Radiol Oncol 2004;22:316-324
  28. Kubo HD, Hill BC. Respiratory gated radiotherapy treatment: a technical study. Phys Med Biol 1996;41:83-91 https://doi.org/10.1088/0031-9155/41/1/007
  29. Neicu T, Shirato H, Seppenwoolde U, Jiang S. Syncronized moving aperture radiation therapy (SMART): Average tumor trajectory for lung patients. Phys Med Biol 2003;48: 587-598 https://doi.org/10.1088/0031-9155/48/5/303
  30. Zhang T, Keller H, Jeraj R, et al. Breathing synchronized delivery-A new technique for radiation treatment of the targets with respiratory motion. ASTRO 44th Annual meeting. 2003, Salt Lake City https://doi.org/10.1016/S0360-3016(03)00980-5
  31. Zhang T, Keller H, Jeraj R, O'Brien MJ, Mackie KR, Paliwal B. Lung motion tracking with a combined spirometerlaser sensor system. AAPM 44th Annnual meeting. 2002, Montreal
  32. Zhang T, Keller H, O'Brien MJ, Paliwal B. Application of the spirometer in respiratory gated radiotherapy. Med Phys 2003;30:3165-3170 https://doi.org/10.1118/1.1625439
  33. Leino K, Nunes S, Valta P, et al. Validation of a new respiratory inductive plethysmograph. Acta Anaesthesiol Scand 2001;45:104-111 https://doi.org/10.1034/j.1399-6576.2001.450116.x
  34. Rode A, Shephard RJ. Accuracy of an electronic spirometer: a field trial. Respiration 1986;50:66-69 https://doi.org/10.1159/000194909
  35. Heller K, Volkel U. A new electronic spirometer with automatic drift compensation and its clinical performance. Prakt Anaesth 1979;14:327-331