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Classify and Quantify Cumulative Impact of Change Orders

On Productivity Using ANN Models
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Change is inevitable and is a reality of construction projects, Most construction contracts include change
clauses and allowing contractors an equitable adjustment to the contract price and duration caused by
change. However, the actions of a contractor can cause a loss of productivity and furthermore can result in
disruption of the whole project because of a cumulative or ripple effect. Because of its complicated nature, it
becomes a complex issue to determine the cumulative impact (ripple effect) caused by single or multiple
change orders. Furthermore, owners and contractors do not always agree on the adjusted contract price for
the cumulative impact of the changes. A number of studies have attempted to quantify the impact of change
orders on project costs and schedule. Many of these attempted to develop regression models to quantify the
loss. However, regression analysis has shortcomings in dealing with many qualitative or noisy input data.
This study develops ANN models to classify and quantify the labor productivity losses that are caused by the
cumulative impact of change orders. The results show that ANN models give significantly improved
performance compared to traditional statistical models.
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1. Introduction

A change order can be defined as “any event, which results in a
modification of the original scope, execution time or cost of work”
(Ibbs and Allen, 1995). The problem with change orders is that since
construction is based upon sequential production, any disruption to a
task within the sequence will impact the remaining tasks even if the
change order itself does not involve these tasks. This is commonty

referred to as “the ripple effect” or “cumulative impact” of changes.

Numerous change orders often result in a loss of productivity and,

furthermore, can result in a disruption of the whole project due to
inefficient labor usage, or the cumulative impact (ripple effect) of
multiple change orders.

Many people recognize that there is cumulative impact above and
beyond the change itself. However, current korean construction
contracts do not typically include adequate language to enable fair
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and equitable compensation for the unforeseen impact of cumulative
change. Often, the contractor fails to foresee, and the owner fails to
acknowledge, the “synergistic effect” of the changes on the work as
a whole when pricing individual changes. Consequently, projects that
exceed cost or schedule targets are likely to lead to claims.
Determining the impacts that changes can have on contract price and
time can be arduous due to the interconnected nature of construction
work and the difficulty in isolating factors for quantification. As a
result, it is very difficult for owners and contractors to agree on
equitable adjustments, especially for cumulative impact. What is
needed is a reliable method (model) to identify and quantify the loss
of productivity (cost) caused by the cumulative impact of change
orders.

A number of studies have attempted to quantify the impact of
change orders on project costs and schedule. Many of these
attempted to develop regression models to quantify the loss.
However, regression analysis has shortcomings in dealing with

highly nonlinear input-output functions. Moreover, regression
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analysis shows limited success when dealing with many qualitative
or noisy input variables. Artificial Neural Networks (ANN) are
known as a powerful tool to model these complicated problems. This
study developed two ANN models to classify projects impacted by
change orders and quantify productivity losses.

2. ANN(Artificial Neural Network)

This research uses Multilayer Feed-Forward Back-Propagation
Networks, because previous research showed that feed-forward
networks have good performance in dealing with pattern
classification (matching output class to target class) and
approximation (regression, modeling) problems. Also, back-
propagation leaming algorithms make it possible to optimize weights
in a multilayer perceptron, thereby minimizing the estimation error.
These two abilities match exactly the purposes of present study. The
concept behind this algorithm is that a network tries to minimize its
output error (Formula 1) by continuously adjusting network weights.
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Figure 1 shows the graphical representation of the feed-forward
back-propagation algorithm and a brief summary of algorithm
process is as follows:

1) Initialize the weights to small random values.

2) Randomly choose an input pattern.

3) Propagate the input forward through the network

4) Compute the error between output and target.

5) Compute the deltas for the preceding layers by propagating the

errors backwards

6) Update weights

7) Repeat the algorithm for the next pattern until the error in the
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Figure 1. Feed-Forward Back-Propagation
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output layer is below a pre-specified threshold or a maximum
number of iterations is reached.

There has been considerable interest in the development of neural
network applications to solve problems in diverse fields such as
construction. This is attributable to their ability to solve a variety of
challenging computational problems with a massively parallel and
distributed system along with their capabilities of generalization, fault
tolerance, and adaptive performance. Also, their generalization
capabilities enable these applications to produce meaningful

solutions to problems in which the input data are noisy and uncertain.

3. Research Methodology

Several studies have attempted to develop a quantification model
for the cumulative loss of change orders. Leonard et al. (1988)
provided a first effort to quantify the effect of change orders on labor
efficiency. This study used 90 cases that involved disputes between
owners and contractors and showed graphic results that related loss
of efficiency to the percentage of changes However, the Leonard -
study identified percent (%) change as the only factor that impacts
project efficiency. Moselhi (1998) expanded Leonard's original work
by using trained neural networks. He also showed that
approximation accuracy could be improved by adding more factors
to the model. Moselhi added three more parameters (total number of
change orders, the frequency of the change orders, and the average
size of the change orders) to Leonard’ s one factor (percent change).
By using trained neural networks, Moselhi improved the output
(productivity loss approximation) significantly. Even though this
study used a limited number of factors, it suggested that the neural
network model can be used to quantify change order impact on
productivity and can also improve the estimation accuracy.

The Construction Industry Institute (CII) and the University of
Wisconsin-Madison change orders research team have conducted the
most significant studies using statistical regression modeling
methods to classify and quantify the impact of change orders on
labor productivity for mechanical and for electrical construction
(Hanna, 2001; Hanna et al. 1999(a), (b)). Several regression models
wetre developed to classify projects impacted (by change orders) and
estimate the cumulative loss of productivity. These studies developed
the term “Delta” in order to calculate the productivity loss associated
with change orders. Delta is graphically shown in Figure 2.

Delta is defined as the difference between the actual labor hours
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needed to complete the project and the budgeted base hours plus the
approved change order hours. Delta can take a positive value or
negative value. Positive values of Delta indicate that more workhours
were used to complete the project than were budgeted, that is that the
actual productivity was less than the planned or estimated
productivity. On the other hand, negative values of Delta indicate
higher efficiency than originally anticipated or budgeted, that is that
less actual hours were spent on the project than planned. To ensure
that the whole of Delta was a result only of the effect of the change
orders on the project, a screening criterion was developed and
utilized. Also, the concept of “Percent Delta” was developed to
compare projects of varying sizes. Percent Delta (%Delta) is defined
as Delta divided by the actual workhours spent to complete the
project. Percent Delta can be written as below. Application of the
Delta approach allowed a macro-analysis, so that cumulative impact
on the project due to change orders could be measured.
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Figure 2. Definition of Delta

These studies also developed a definition of an “impacted”
project. The contractors classified projects as either “on budget” or
“over budget” based on their budgeted workhours at the data
collection stage. These initial contractor classifications of projects as
impacted or unimpacted were then compared to a cutoff line drawn
at 5% Delta. Since a conservative estimate of a contractor s
estimating ability is 5%, this was set as the lower limit for impacted
projects.

The problem with these studies is even though these studies found
several more factors which impact productivity, it is still difficult to
validate developed models with high classification and prediction
accuracy for new cases because of the low R2 (quality of regression

model). The reason is that there are still other factors which

significantly impact productivity and that these factors are
interconnected with a highly nonlinear structure. Also, many of them
are qualitative in nature rather than quantitative. Usually, regression
analysis has limited success when dealing with many qualitative or
noisy input variables.

The present researches have acquired two groups of case studies
from electrical and mechanical specialty contractors through a study
conducted by the principal investigator of a Construction Industry
Institute research report (Hanna, 2001). The first group includes 140
case studies for developing an “impact model” (classifying whether a
project was impacted by change orders or not). The second group
includes 64 case studies which were impacted by change orders to
develop a “change order loss (%Delta) model’ (quantifying the
cumulative productivity loss). The two groups of data were further
divided into a training group and a testing group. These case studies
have potentially 70 independent factors (Input) that may impact
project performance. Many of them are qualitative factors and are
difficult to model using traditional statistical (regression) techniques.

Define
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Figure 3. Research Process {methodology)

This research included statistical significance testing to find and
determine significant factors and used these factors to develop trained
ANN models. Furthermore, the ANN models were validated by
testing with new case studies. Research process shows in Figure 3.

4. Change Order “Impact Model”

A ‘“change order impact model” is defined as a trained ANN
model to determine that a project was impacted by change orders or

%DELTA=

Total Actual Direct Labor Hours - (Budgeted Hours + Change Order Hours) 100

Total Actual Direct Labor Hours
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was not. This model used 140 case studies (training: 130 cases;
testing: 10 cases), and the training group had 69{%unimpacted
(normal) projects and 61 impacted projects (by charige orders). Each
case study is composed of 70 potential input features-kindependent
variables) and one output feature (dependent variable). iﬁput features
include numerical, binary, and categorical inputs. In addition, the
output feature possesses a binary case only (1: the project was
impacted by change order; 0: was not impacted). The first step in the
model development was to find significant input features (factors).
Some of the factors showed significant differences between
impacted and unimpacted projects’ characteristics while some did
not. There are two steps in determining significant features. The first
step is ‘irrelevant feature reduction” (rernoving un-correlated
features), and the second step is “redundant feature reduction” (if the
value of a feature is linearly dependent on the remaining features,
then this feature can be removed). To perform these feature
dimension reductions, this study used statistical methods. We can use
statistical significance tests to detect significant features, which have
a strong relationship with the output feature, by performiﬁg the null
hypothesis (H o) test so irrelevant features can be remo'\;ed. Also,
statistical correlation tests can calculate the correlati’én values
between features so that reduridant features can be reduced. These
tasks were performed using the statistical software Mlmtab, and a
summary of selected test values (correlation value and p-value) is
shown in Appendix-A. »

The test values demonstrate that projects impacted by change
orders have a greater number of change orders; higher ratios of peak
over average manpower; longer change order processing times;
more design errors; and higher absenteeism, overtime, and
overmanning. However, a project that has adequate coordination and
support between the architect and engineer, adequate productivity
tracking, and a large percentage of the project manager’ s effort
(time) devoted to the job site is less likely to be impacted by change
orders. These results are consistent with industry intuition.

Two ANN models were developed to classify the impact of
change orders. Model ANN-8 comprises the same factors (8 factors)
that were used for the impact (logistic regression) model (Hanna-
CI1,2001) for comparison purposes. Model ANN-18 extends the
number of factors to 18 to include not only quantitative factors but
also some of the significant qualitative factors. Appendix-A shows a
summary of selected factors for the ANN-8 and ANN-18 models
along with a brief description of each factor.
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This study used the mathematical computing software Matlab to
perform the neural network execution. Many sub-routine programs
were developed and run in Matlab with a back-propagation
algorithm. To develop well-trained neural networks, one needs to
optimize the number of hidden layers and neurons to use, the
leaming rate (@), the momentum value (v), the activate function, and
the number of epochs to run. Network performances are varied
through these parameters, and we can find optimized valves of each
parameter by the “trial and error’ method. After many repetitions of
the network execution, we found that the ANN-8 model optimized
under a three layer perceptron network (8-5-3-1) with five hidden
neurons in the first hidden layer and three hidden neurons in second
hidden layer. Also, we found a learning rate (¢=0.01) and a
momentum value (v=0.8) with the sigmoid activation function after
1000 iterations of the epochs. Figure 4 shows a graphical
representation of the ANN-8 model design.

Mecharical or Electical O
Percent Change
Est. vs. Act. Peak Manpower . Unimpacted
(output < 0.5)
Peak over Ave. Manpower .
Processing Time Impacted
Percent Design Problems (output >0.5)
QOvertime /
Overmanning ' /
HIDDEN LAYERS OUTPUT LAYER

Figure 4. A Network Design for ANN-8 Model

The ANN-18 model shows optimized performance with a one
hidden layer perceptron network (18-10-1) with ten hidden neurons.
The rest of the settings (leamning rate, momentum value, activation
function, and epoch size) used the same values as the ANN-8 model.

Once the network is optimized, we can obtain the model estimate
(network output) and compare it with the expected actual output.
Since this study used the same data as in previous research (Hanna-
CI1,2001), it is reasonable to compare the performances. Figure 5
shows a comparison of performance between actual and estimated
values for each model. From the confusion matrix comparison, both
the ANN-8 and ANN-18 models show superior performance over
the statistical regression method. The previous logistic regression
model classified 77.7% of the cases correctly, but the ANN-8 model
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shows about a 95% classification rate and the ANN-18 model shows
a 100% classification rate in the training stage.
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Figure 5. Impact Model Performance Comparison

5. Change Order “Loss (%Delta) Model’

The “change order loss (%Delta) model” is a trained ANN model
that quantifies productivity losses caused by the cumulative impact
of change orders. This study used 64 case studies that were impacted
(experienced a productivity loss) by change orders. These case
studies were divided into two groups: 57 case studies for the training
set and 7 case studies for testing and validation. The training data (57
case studies) include 70 potential input features (independent
variables) and one output feature (%loss of productivity). Input
features include numerical, binary, and categorical inputs. The output
feature is a numerical form of a productivity loss percentage (from
0% to 100%).

Again, model development started with the selection of significant
input features (factors). Some of the factors have a relationship with
productivity loss, but some do not show a correlation. A summary of
selected factor values (correlation value and p value) is shown in
Appendix-B. The statistical tests show that a project is more likely to
experience productivity losses if it is larger, has more change orders,
manpower fluctuations and shortages, longer change order
processing time, higher absenteeism, turnover, and overmanning.
However, the cumulative productivity losses caused by change
orders are reduced in a project that has adequate coordination and
support between the architect and engineer, adequate productivity
tracking, a larger portion of owner initiated change orders, a properly
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updated CPM schedule, and a large percentage of the project
manager s effort(time) on the job site.

Two ANN models were developed to quantify the loss of
productivity due to the cumulative impact of change orders. Model
ANN-6 contains the same factors (6 factors) that were used for the
previous regression model (Hanna-ClI, 2001) to allow comparison
of their performance. Model ANN-20 extends the number of factors
to 20 to allow development of a more rigid model.

This study used the same back-propagation programs that were
developed for previous models and repeatedly executed them in
Matlab to optimize the parameter settings. The ANN-6 model
optimized under a three layer perceptron network (6-4-3-1) with four
hidden neurons in the first hidden layer and three hidden neurons in
the second hidden layer. In addition we found a learning rate (a
=0.01) and a momentum value (v=0.8) with a sigmoid activation
function after 1000 iterations of the epochs. Figure 6 shows a
graphical representation of the ANN-6 model design.
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. . 4,; "%‘% . 4'\ (0 %—100%)
SRS
Ovemaing (_) W O
PMPerTime|
| INPUTLAYER | | HDDENLAVERS| | OUTPUT LAYER |

Figure 6. A Network Design for ANN-6 Model

The ANN-20 model showed optimized performance with a two
hidden layer perceptron network (20-10-5-1). The rest of the settings
(leamning rate, momentum value, activation function, and epoch size)
used the same values as the ANN-6 model.

Again, we can compare the different models’ estimates since the
models were developed from the same data set. Figure 7 show the
comparison of performance (output) between the actual and
estimated values of each model.

Both the ANN-6 and ANN-20 models show superior performance
over the statistical regression method. The regression model shows
53% of average %error, but the ANN-6 model shows 5.11% and
ANN-20 shows only 2.83% error for the training cases. The ANN
models show significant improvements in approximation.
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Figure 7. %Delta Model Performance Comparison
6. Model Testing and Validation

Once the trained neural networks are developed, we. can apply
them to new projects. At the beginning stage, we divide all the data
into two sets: one for training and the other for testing. Testing data
were randomly selected from the original data set and were not
included in the training data set.

This study tested the impact model first. Testing data were
composed of five electrical and five mechanical projects, and three in
each category were impacted projects. To test the reliability of the
trained network, we input the testing data (10 projects) into each
trained network (ANN-8, ANN-18) and determine how well the
network classified the impacted projects. Table 1 shows the
comparison of testing results between the different models. The
logistic regression model (Hanna-CII, 2001) shows only a 60%
classification rate, but both neural network models show a 100%
classification rate. The neural network models classify all testing
projects correctly. These results validate that the developed ANN
models provide a fairly reliable output.

Table 1. Testing Result for Impact Models

Case Study Statistical ANN-8 ANN-18
Model Model Model
€071 Impacted Unimpacted impacted Impacted
E201 I Impacted Impacted
Electrical E341 impacted Impacted Impacted Impacted
E352 | Unimpacted || Unimpacted | Unimpacted | Unimpacted
Testing Data E161 | Unimpacted || Unimpacted | Unimpacted | Unimpacted
{10 Projects) 3172 Impacted || Unimpacted | Impacted Impacted
3301 Impacted Unimpacted Impacted Impacted
Mechanical | 3012 Impacted Impacted Imp d
3081 | Uni d || Uni ted | Uni Unimpacted
3061 Unimpacted Impacted Unimpacted | Unimpacted
Classification rate 60% 100% 100%

The change order loss (%Delta) models were tested in the same
fashion. Actual productivity losses in the testing data varied from
10% to 50% of actual labor hours. To test the trained network, we

input the testing data (7 projects) into each trained-network (ANN-6,
ANN-20) and determined how well the network estimated each
project’ s productivity loss. Figure 8 shows the comparison of the
testing results between the different models. The regression model
shows 41.17% of average %error, but the ANN-6 model shows
15.12% and the ANN-20 model shows only 7.49% of average
%error. The neural network models show superior accuracy in

productivity loss approximation.
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Figure 8. Testing Result for Productivity Loss Models

7. Summary and Conclusion

This study developed artificial neural network models to classify
and quantify productivity loss caused by change orders for electrical
and mechanical projects. First, it showed significantly related factors
for each model. This study employed the same factors used in
previous research (Hanna-CII regression models, 2001) for an
impact model (ANN-8) and a productivity loss model (ANN-6) and
obtained, and added, additional factors to include qualitative aspects.
The ANN-18 model was developed for an impact model with 18
factors and ANN-20 was developed for a change order loss model
with 20 factors.

The developed models show significant improvements in
classification and estimation accuracy not only for the training
performance but also at the testing stage as compared to previous
statistical regression models. At the training stage, the ANN-8model
shows 95% and the ANN-18 model shows 100% classification
accuracy, whereas the regression model shows only 77.7% accuracy.
Also, for the change order loss (%Delta) model, ANN-6 shows
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5.11% and ANN-20 shows 2.83% of average %error, but the
regression model shows about 50% error. In the validation (testing)
process, the regression model shows only 60% classification
accuracy, but both neural network models show 100% accuracy.
Also, for the change order loss (%Delta) model, ANN-6 shows
15.12% and ANN-20shows 7.49% of average %error but the
regression model shows an average of 41.17% error. These results
encourage the use of the Artificial Neural Network approach in that it
can provide improved performance compared to traditional statistical
methods in the field of construction data management, which has
characteristics of noisiness and uncertainty. This methodology could
also be applied to other problems for which solutions are generated
based on analogy with previous cases rather than deduction and deep
reasoning.

- Computer and web-based interface applications are recommended
for further tasks, thereby allowing stakeholders easy access to apply
their project case. Also, a web-based interface will make it possible
to build more rigid models through collecting more data from the
industry.

Finally, since the study was conducted in US construction

environment, the application of this study outside of US should be
careful. Without solid productivity data acquisition and maintenance
system, proposed methodologies can not be applied. Especially,
Korean construction industry have weakness in this aspects.
Development of productivity management system should be

preceeded prior to application of proposed methodology.
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Appendix@): Impact Model Factors

Interpretation

Factor P-value | Correlation ...is more likely to be impacted, ANN-8 | ANN-18
MorE 0.882 0.013 Indicator Variable (Mechanical or Electrical Projects) * *
Percent Change 0.002 0137 A project with more change -+ * *
Percent Extended 0.014 0.216 A project that is extended - *
Est. vs. Act. Peak Manpower 0.004 -0.154 A project with a lower ratio of estimated to actual manpower - * *
Est, vs., Act, Peak over Ave, Manpower 0,06 —0132 A project with a lower ratio of estimated to actual peak over .
average manpower -

Peak over Average Manpower 0.029 0177 A project with a higher ratio of peak to average manpower- * *
Extension Requested 0.009 0.219 A project where an extension was requested -+ *
AE Coordination Prior to Construction 0.058 -0.134 A project without adequate coordination of the trades - *
AE Support During Construction 0.003 —0.252 A project without adequate AE support during construction - *
Manpower Shortage During Construction 0.077 0124 A project with a manpower shortage during construction - *
Processing Time 0 0.187 A project with a fonger processing time - * *
Percent of Submitted Change Order 0.002 -0.189 A project with a low percentage of the change order hours .
Hours Approved by Owner approved by the owner -

Percent of Change Orders Resulting 0.08 0.15A project with more change orders resulting from the design . .
from Design Problems changes or errors -

Absentesism 0,003 0.189 A project with a high absenteeism rale amongst .

the craftsmen -

Overtime 0.014 0.2038 A project where overtime is used for change orders - * *
Overmanning 0 0.378 A project where overmanning has occurred - * *
Productivity 0.081 -0.148 A project without adequate productivity tracking:-- *
PMPerTime 0.045 ~0.172A project has less PM's effort {time) on the job-- *
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Appendix(B): Productivity Loss Mode! Factors

Factor P-value | Correlation Interpretation ANN-6 | ANN-20

Project Size 0.013 0.239 Larger projects have a higher %Delta than smaller projects. *
Percent Change 0.062 0.181 More change leads to a higher %Delta. ) % *
Percent Extended 0.05 0.19 Projects that were extended a longer period of time showed a larger %Delta. *
Estimated over Actual

Average Manpower 0.005 -0.271 *
Peak Manpower 0 -034 As the ratio of estimated to actual manpower decreases, the %Delta increases. *
Peak These variables are relaled 1o site congestion and overmanning.

Mea over Average 0,005 027 .

anpower
) Projects where an extension has been requested are more likely have a
Extension Requested 0.057 0.185 higher %Delta, *
- If the AE did not provide adequate coordination of the trades during the
AE Coordination 0.067 0179 design phase, a higher %Delia is likely on the project. '
If the AE did not provide adequate support during construction,
AE Support 0.034 ~0.206 a higher %Delia is likely on the project. *
Productivity 0.031 -0.209 I the contractor does not track their productivity, a higher %Delia can be expected. * *
It there is a manpower shortage during construction, the %Delta is
Manpower Shortage 0.032 0.207 expected 1o be increased, *
Processing Time 0.002 0.292 The longer the processing time of change orders the higher the expected %Della. * *
PerOwninitCO 0.008 -0.26 The more change orders iniliated by the owner, the lower the expected %Delta. *. *
Absenteeism 0 0.368 The more absenteeism there is on the project, the higher the %Delta, *
Turnover 0.029 0.215 The more turnover there is on the project, the higher the %Deita. *
Overmanning 0.012 0.224 If overmanning is used, the %Delta is expected 1o be increased. * *
Indusirial 0061 | 0243 Indicator factor *
UPCPM 0.017 -0.216 Updating the CPM schedule properly during construction can lower the expected %Delta, *
. If the project manager provides more effort (time) on the job, the %Delta is
PMPerTime 0.014 0.238 expected to be decreased. ' i
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