An Application of AdaBoost Learning Algorithm and Kalman Filter to Hand Detection and Tracking

AdaBoost 학습 알고리즘과 칼만 필터를 이용한 손 영역 탐지 및 추적

  • 김병만 (금오공과대학교 컴퓨터공학부) ;
  • 김준우 (금오공과대학교 소프트웨어공학과) ;
  • 이광호 (목포대학교 컴퓨터교육과)
  • Published : 2005.09.30

Abstract

With the development of wearable(ubiquitous) computers, those traditional interfaces between human and computers gradually become uncomfortable to use, which directly leads to a requirement for new one. In this paper, we study on a new interface in which computers try to recognize the gesture of human through a digital camera. Because the method of recognizing hand gesture through camera is affected by the surrounding environment such as lighting and so on, the detector should be a little sensitive. Recently, Viola's detector shows a favorable result in face detection. where Adaboost learning algorithm is used with the Haar features from the integral image. We apply this method to hand area detection and carry out comparative experiments with the classic method using skin color. Experimental results show Viola's detector is more robust than the detection method using skin color in the environment that degradation may occur by surroundings like effect of lighting.

웨어러블 컴퓨터의 개발로 인해 인간과 컴퓨터간의 전통적인 인터페이스는 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 디지털 카메라를 통해 인간의 제스처를 인식하는 새로운 인터페이스를 연구하였다. 카메라를 통해 손 제스처를 인식하는 방법은 빛과 같은 주변 환경에 영향을 받기 때문에 탐지기는 덜 민감해야 한다. 최근에 Viola 탐지기는 얼굴 탐지에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 하얼 특징을 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 이 방법을 손 영역 탐지에 적용하였으며 피부색을 이용한 고전적인 방법들과 비교 실험을 수행하였다. 실험 결과는 빛과 같은 방해 요소가 있는 환경에서 Viola 탐지기가 피부색을 이용한 탐지 방법보다 더 견고함을 보여 주었다.

Keywords