전해생성(電解生成)된 염소(鹽素)에 의한 폐인쇄회로기판(廢印刷會路基板)으로부터 동(銅)의 침출(浸出)

Leaching of Copper from Waste Printed Circuit Boards Using Electro-generated Chlorine in Hydrochloric Acid

  • 김민석 (한국지질자원연구원, 자원활용소재연구부) ;
  • 이재천 (한국지질자원연구원, 자원활용소재연구부) ;
  • 정진기 (한국지질자원연구원, 자원활용소재연구부) ;
  • 김병수 (한국지질자원연구원, 자원활용소재연구부) ;
  • 김은영 (과학기술연합대학원대학교)
  • Kim, Min-Seuk (Korea Institute of Geoscience and Mineral Resources, Minerals & Materials Processing Division) ;
  • Lee, Jae-Chun (Korea Institute of Geoscience and Mineral Resources, Minerals & Materials Processing Division) ;
  • Jeong, Jin-Ki (Korea Institute of Geoscience and Mineral Resources, Minerals & Materials Processing Division) ;
  • Kim, Byung-Su (Korea Institute of Geoscience and Mineral Resources, Minerals & Materials Processing Division) ;
  • Kim, Eun-Young (University of Science & Technology)
  • 발행 : 2005.10.30

초록

염산용액에서 전해생성 된 염소를 이용하여 폐프린터의 인쇄회로기판으로부터 동을 침출하는 연구를 수행하였다. 폐인쇄회로기판을 분쇄한 다음 입자크기가 $0.6{\sim}1.2mm$인 비자성 성분을 선별하여 침출실험을 행하였다. 비자성 분쇄물 중 금속성분의 평균함량은 45wt%이었으며, 동이 금속성분의 83.6wt% 이었다. 1 M 염산용액에서 전해생성된 염소에 의한 동의 침출반응은 전류밀도와 교반속도에 크게 영향을 받았다. 염산농도: 1 M, 전류밀도: $20mA/cm^2$, 침출온도: $50^{\circ}C$, 침출시간: 180분, 교반속도: 600rpm의 침출조건에서 동의 침출율은 98%로서 침출액에서 농도는 3.69g/l 해당하였다. 동의 침출반응에 대한 전해생성 된 염소의 이용율은 교반속도가 높고 인가전류밀도가 낮을 수록 높았다. 또한 침출반응 초기에는 알루미늄, 납, 주석 등의 기타금속 성분의 침출이 활발하고 동의 침출반응은 억제되었다.

Electro-generated chlorine leaching of waste printed circuit boards was investigated in hydrochloric acid solutions. Non-magnetic component of $0.6{\sim}1.2mm$ was prepared by grinding, magnetic separation, and sieving. The non-magnetic component of pulverized printed circuit board contained about 45% of metal component, in which copper was about 83.6%. The leaching rate of copper was greatly affected by current density and agitation speed. The leaching of copper up to 98% was achieved at $20mA/cm^2$, $50^{\circ}C$, 180 minutes, and 600 rpm in 1M HCl solutions. Increasing agitation and lowering current density enhanced utilization efficiency of electro-generated chlorine. Leaching of copper was suppressed at the initial stage, while the minor metal elements, such as aluminum, lead, and tin, were dominantly leached out.

키워드

참고문헌

  1. Brodersen, K., et al., 1992: 'Scrap of Electronics; Hazardous Waste or Raw Material Resources', Proc. of Intern. Conf. on the Recycling of Metals, MIS of ASM, pp. 45-51, The European Council of ASM Intern. and its Technical Committee, Dusseldorf/aeuss-Germany, 13-15 May 1992, Printed in Belgium
  2. 이재천, 2004: '전자제품 재활용', 리싸이클링백서, 산업 폐기물재활용기술개발산업단, 한국자원리싸이클링학회, pp. 546-578, 청문각, 서울, 한국
  3. 강홍윤, 2004: '국내의 자원순환시스템 현황 및 개선방안', KNCPC 2004 RE-4 연구보고서, 국가청정생산지원센터 편, pp. 82-105, 서울, 한국
  4. Sun, Elaine Y.L., 1991: 'The Recovery of Metals from Electronic Scrap', JOM, 43(4), pp. 53-61 https://doi.org/10.1007/BF03220549
  5. Setchfield, J.H., 1987: 'Electronic Scrap Treatment at Engelhard', Precious Metals 1987, ed. Vermeylen, G and Verbeeck, R., IPMI, pp. 147-164, Allentown, PA, USA
  6. Hedlund, L. and Johansson, L., 1985: 'Recent Developments in the Boliden Lead Kaldo Plant', Recycle and Secondary Recovery of Metals, Taylor, P.R., Sohn, H., and Jarrett, N., TMS, pp. 787-796, Warrendale, PA, USA
  7. Kaltenboeck, J., et al., 1985: Metal(Berlin), 39(11), pp. 1047-1048
  8. Edson, G., 1981: 'Recovery of Precious Metals from Electronic Scrap', Recovering and Refining of Precious Metals, IPMI, Paper 10, Skytop, PA, USA
  9. Dunning, Jr., B.W., 1986: 'Precious Metals Recovery from Electronic Scrap and Solder used in Electronics Manufacture', Precious Metals Recovery Low Grade Resources, IC 9059, U.S. Bureau of Mines, pp. 44-56, Washington, D.C., USA
  10. Day, J.G., 1984: U.S. patent 4,427,442
  11. Koyama, K., Tanalca, M., and Lee, J-C., 2003: 'Copper Recovery from Waste Printed Circuit Board', Hydrometallurgy 2003 - Proceedings of the Fifth International Symposium Honoring of Professor Ian M. Ritchie, Vol. 2: Electrometallurgy and Environmental Hydrornetallun Young, CA, et al., pp. 1555-1563, TMS/SME/CIM, August 24-27, 2003, Vancouver BC, Canada
  12. Kobayashi, M., 2000: 'Current Research Projects for the Development of Hydrometallurgical Process to Refine Chalcopyrite', Shigen-to-Sozai, 116, pp. 1-6 https://doi.org/10.2473/shigentosozai.116.1
  13. Hamalainen, M., Hyvarinen, O., and Jyrala, M., 2003: 'SOLUTION PURIFICATION IN THE OUTOKUMPU HYDROCOPPER$^{TM}$ PROCESS', Hydrometallurgy 2003- Proceedings of the Fifth International Symposium Honoring of Professor Ian M. Ritchie, Vol. 1, Young, C.A., et al., pp.545-553, TMS/SME/CIM, August 24-27, 2003, Vancover BC, Canada
  14. Bard, A.J., Parsons, P., and Jordan, J., 1985: 'Standa Potentials in Aqueous Solution', Marcel Dekker, INC., New York, USA, pp. 287-294
  15. Alex, P., Mukherjee, T.K., and Sundaresan, M., 1993: 'Leaching behavior of nickel in aqueous chlorine solutions and its application in the recovery of nickel from a spent catalyst', Hydrometallurgy, Vol. 34, pp. 239-253 https://doi.org/10.1016/0304-386X(93)90038-F
  16. Derek Pletcher, 1982: 'The Chlor-alkali Industry, Industrial Electrochemistry', Chapman and Hall, London, UK, pp. 88-113