Leaching Behavior of Nickel from Waste Multi-Layer Ceramic Capacitor

폐(廢) 적층형(積層形)세라믹콘덴서에 함유(含有)된 니켈의 침출거동(浸出擧動)

  • Kim, Eun-Young (Department of Resources Recycling, University of Science & Technology) ;
  • Kim, Byung-Su (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM)) ;
  • Kim, Min-Seuk (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM)) ;
  • Jeong, Jin-Ki (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM)) ;
  • Lee, Jae-Chun (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM))
  • 김은영 (과학기술연합대학원대학교 폐자원활용) ;
  • 김병수 (한국지질자원연구원, 자원활용소재연구부) ;
  • 김민석 (한국지질자원연구원, 자원활용소재연구부) ;
  • 정진기 (한국지질자원연구원, 자원활용소재연구부) ;
  • 이재천 (한국지질자원연구원, 자원활용소재연구부)
  • Published : 2005.10.30

Abstract

Leaching behavior of nickel contained in waste Multi-Layer Ceramic Capacitor (MLCC) was investigated using a batch reactor. The effects of acid type, acid concentration, leaching temperature, particle size, and reaction time on the extraction of nickel metal from waste MLCC were examined. As a result, 97% of nickel contained in waste MLCC was leached out in 30 min at the temperature of $90^{\circ}C$ under the condition of $HNO_3$ concentration 1N, solid/liquid ratio 5 g/L and particle size $-300/+180{\mu}m$. It was also found that a Jander equation was useful to fit well the leaching rate data. The rate of nickel leaching is controlled by pore diffusion in $BaTiO_3$ layer and has an activation energy of 37.6 kJ/mol (9.0 kcal/mol).

폐 적층형세라믹콘덴서(Multi-Layer Ceramic Capacitor, MLCC)에 함유된 니켈의 침출거동에 대한 연구를 수행하였다. 침출제인산의 종류와 산농도, 침출온도, 입자크기, 침출시간이 니켈의 침출거동에 미치는 영향을 조사하였다. 실험결과, 광액농도 5g/L, 질산농도 1N 침출온도 $90^{\circ}C$, 시료입도 $-300/+180{\mu}m$, 침출시간 30분에서 니켈의 침출율은 97%이었다. 니켈의 침출반응속도는 cylinder 형상의 Jander 식에 잘 따르는 것으로 분석되었다. 니켈의 침출반응은 잔류 $BaTiO_3$ 공극 확산율속반응이며, 활성화 에너지는 37.6kJ/mol(9.0 kcal/mol)이였다.

Keywords

References

  1. 심재홍, 2004: 적층 세라믹 칩 콘데서의 특허 동향, 한국특허정보원
  2. 김은영 외, 2005: MLCC 스크랩으로부터 니켈의 질산 침출 연구, 2005년 제25회 학술발표회 논문집, pp. 41-45, 한국자원리싸이클링학회, 연세대학교, 5월 19-21일, 2005년, 서울, 한국
  3. 李應祚,1985: 습식제련공학, 문운당, 서울, 한국
  4. 손정수 외,2005 戰略金屬 스크랩 資源化를 위한 코발트 物質흐름 現況調상, 한국지원리싸이클링학회지,14(2), pp. 43-55
  5. Mecucci, A., Scott, K., 2002: Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards. J. Chem. Technol. Biotechnol., 77, pp. 449-457 https://doi.org/10.1002/jctb.575
  6. Kim, D. J., Park, K. H., 1999: Study on the leaching mechanism of Cu and Ni from deep-sea manganese nodules with sulfuric acid, J. Kor. Inst. Met. & Mater., 37(12), pp. 1564-1569
  7. Levenspiel, O., 1962: Chemical reaction engineering, pp. 338-352, John Wiley & Sons, Inc., New York, USA
  8. Yoo, J. M. et al., 2005: Kinetics of the volatilization removal of lead in electric arc furnace dust, Mater. Trans., 46(2), pp. 323-328 https://doi.org/10.2320/matertrans.46.323
  9. Abdel-Aal, E. A., Rashad, M. M., 2004: Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid, Hydrometallurgy, 74, pp. 189- 194 https://doi.org/10.1016/j.hydromet.2004.03.005
  10. Hernandez, L. G. et al., 1986: Preparation of amorphous silica by acid dissolution of sepiolite-kinetic and textural study, .J CoIl. Int. Sci., 109(1), pp. 150-160 https://doi.org/10.1016/0021-9797(86)90290-0
  11. Yoo, J. M. et al., 2004: Leaching of Nickel from a hydrodesulphurization spent catalyst with ammonium sulfate, J. of Chem. Eng. of Japen, 37(9), pp. 1129-1134 https://doi.org/10.1252/jcej.37.1129
  12. Jena, P. K., Barbosa-Filho, O. and Vasoncelos, I. C; 1999: Studies on the kinetics of slurry chlorination of a sphalerite concentrate by chlorine gas, Hydrometallurgy, 52, pp. 111-122 https://doi.org/10.1016/S0304-386X(98)00067-X
  13. Habashi, E, 1980: Principles of extractive metallurgy, Volume I., pp. 111-169, Gordon and Breach, New York, USA
  14. Habashi, E, 1980: Principles of extractive metallurgy, Volume I., pp. 223-252, Gordon and Breach, New York, USA
  15. Sohn, H. Y, 1978: Law of additive reaction times in fluidsolid reactions, Metall. Trans. B, 9B(1), pp. 89-96