DOI QR코드

DOI QR Code

Characteristics of (Ca,Sr)-doped LaCrO3 Coating Layer for Ceramic Interconnect of Solid Oxide Fuel Cell

고체산화물 연료전지용 (Ca,Sr)도핑된 LaCrO3계 세라믹 연결재 코팅층의 특성 연구

  • Lee, Gil-Yong (Hydrogen & Fuel Cells Research Department, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Hydrogen & Fuel Cells Research Department, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Hydrogen & Fuel Cells Research Department, Korea Institute of Energy Research)
  • 이길용 (한국에너지기술연구원 수소연료전지연구부) ;
  • 백동현 (한국에너지기술연구원 수소연료전지연구부) ;
  • 송락현 (한국에너지기술연구원 수소연료전지연구부)
  • Published : 2005.11.30

Abstract

Using Pechini method, we synthesized the $La_{0.6}Ca_{0.41}CrO_3$ (LCC41) and $La_{0.8}Sr_{0.05}Ca_{0.15}CrO_3$ (LSCC) powders for slurry dip coating, and $La_{0.75}Ca_{0.27}CrO_3$ (LCC27) powder for air plasma spray coating. The sintering property of the powders and their coating properties were investigated. The average particle sizes of the LCC41, LSCC, LCC27 were 0.6, 0.9, $1.5{\mu}m$, respectively. The relative density of LCC41 bulk was to be found about 98%. The LSCC coating on anode support prevented Ca migration of the coated LCC41 on the anode some or less, which was confirmed from EDS result. The air plasma spray-coated LCC27 with the dip-coated LCC41 were more dense and showed better electrical conductivity than those of the air plasma spray-coated LCC27 and the dip-coated LSCC and LSCC41. The LCC41 and LCC27 showed good electrical conductivities, but the LSCC had a poor electrical conductivity probably due to low sinterability

본 연구는 Pechini법을 이용하여 Ca과 Sr이 도핑된 $LaCrO_3$계의 $La_{0.6}Ca_{0.41}CrO_3$ (LCC41), $La_{0.8}Sr_{0.05}Ca_{0.15}CrO_3$, (LSCC), $La_{0.75}Ca_{0.27}CrO_3$ (LCC27) 분말들을 제조하여, 분말의 소결 특성 및 코팅층의 특성을 조사하였다. 제조된 LCC41, LSCC, LCC27 분말은 각각 0.6, 0.9, $1.5{\mu}m$의 평균 입자크기를 가졌으며, LCC41의 경우 $1400^{\circ}C$에서 98% 이상의 소결 밀도를 나타내었다. 연료극 지지체상의 LSCC 코팅은 LCC41층에 있는 Ca의 이동을 어느 정도 억제하는 역할을 하는 것으로 나타났다. 대기 용사 코팅된 LCC27은 치밀한 코팅막을 형성하였으며, 이 코팅층 위에 LCC41을 습식 코팅할 경우 더욱 치밀하고 높은 전기전도도를 갖는 코팅막을 얻을 수 있었다. 용사코팅된 LCC27, 습식 코팅된 LCC41는 높은 전기전도도를 나타내었으나, LSCC의 경우 낮은 소결성으로 인해 전기전도도가 작게 나타났다.

Keywords

References

  1. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, 'Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials', Solid State Ionics, 52, 43 (1992) https://doi.org/10.1016/0167-2738(92)90090-C
  2. D. H. Peck, M. Miller, and K. Hilpert, 'Vaporization and Thermodynamic Activities in $La_{0.80}Sr_{0.2-x}Ca_xCrO_{3-{\delta}}$ (x=0.05 0.10 and 0.15) Investigated by Knudsen dffusion Mass Spectrometry', J. Electrochem. Soc., 148, A657 (2001) https://doi.org/10.1149/1.1372221
  3. L. W. Tai and P. A. Lessing, 'Modified resin-intermediate processing of perovskite powders : Part I. Optimization of polymeric precursors', J. Mater. Res, 7, 502 (1992) https://doi.org/10.1557/JMR.1992.0502
  4. S. Onuma, S. Miyoshi, K. Yashiro, A. Kaimai, K. Kawamura, Y. Nigara, T. Kawada, J. Mizusaki, N. Sakai, and H. Yokokawa, 'Phase stability of $La_{1-x}Ca_xCrO_{3-\delta}$ in oxidizing atmosphere', J. Solid State Chemistry, 170, 68 (2003) https://doi.org/10.1016/S0022-4596(02)00024-5
  5. I. Yasuda and T. Hikita, 'Electrical Conductivity and Defect Structure of Calcium-doped Lanthanum Chromites', J. Electrochem. Soc., 140, 1699 (1993) https://doi.org/10.1149/1.2221626
  6. G Y Lee, J. H. Kim, S. N Ryu, Y. G Shul, D. R. Shin, D. H. Peck, and R. H. Song, 'Characteristic of Ceramic Interconnect Coating Layer for Anode Supported Flat Tube SOFC,' Abstract Book of Spring Meeting of the Korean Electrochemical Society, 70 (2004)
  7. N. Q. Minh and T. Takahashi, 'Science and Technology of Ceramic Fuel Cells', Elsevier, Amsterdam, 1995, p.180
  8. TOTO Co., Japan. Patent No. 5-121085 (1993)
  9. J. H. Kim, D. H. Peck, R. H. Song D. H. Jung, and D. R. Shin, 'Synthesis and Sintering Properties of $(La_{0.8}Sr_{0.2-x}Ca_x)CrO_3$ Perovskite Material for Interconnect in SOFC Applications', 2002 Fuel Cell Seminar, Palm Springs, CA, 534-537 (2002)
  10. L. W. Tai and P. A. Lessing, 'Modified resin-intermediate processing of perovskite powders: Part II. Processing for fine, nonagglornerated Sr-doped lanthanum chromite powders', J. Mater. Res., 7, 511 (1992) https://doi.org/10.1557/JMR.1992.0511
  11. J. D. Carter, H. U. Anderson, and M. G. Shumsky, J. Mater. Sci., 31, 551 (1996) https://doi.org/10.1007/BF01139176
  12. N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, and T. Iwata, 'Thermal expansion of some chromium deficient lanthanum chromites', Solid State Ionics, 40/41, 394 (1990) https://doi.org/10.1016/0167-2738(90)90365-X
  13. W. Z. Zhu and S. C. Deevi., 'Development of interconnect materials for solid oxide fuel cells', Materials Science and Engineering, A00, 1 (2003)

Cited by

  1. Property Analysis of Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Method for SOFC vol.49, pp.6, 2011, https://doi.org/10.9713/kcer.2011.49.6.710