3차원 CT 영상을 이용한 정상교합자의 안면 연조직 계측 분석

Facial soft tissue measuring analysis of normal occlusion using three-dimensional CT imaging

  • 한수연 (연세대학교 치과대학 교정학교실) ;
  • 백형선 (연세대학교 치과대학 교정학교실, 두개안면기형연구소, 구강과학연구소) ;
  • 김기덕 (연세대학교 치과대학 구강악안면방사선학교실, 구강과학연구소) ;
  • 유형석 (연세대학교 치과대학 교정학교실, 두개안면기형연구소, 구강과학연구소)
  • Han, Soo-Yeon (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Baik, Hyoung-Seon (Department of Orthodontics, College of Dentistry, Yonsei University, Craniofacial Deformity Center, Oral Science Research Center) ;
  • Kim, Kee-Deog (Department of Oral & Maxillofacial Radiology, College of Dentistry, Yonsei University, Oral Science Research Center) ;
  • Yu, Hyung-Seog (Department of Orthodontics, College of Dentistry, Yonsei University, Craniofacial Deformity Center, Oral Science Research Center)
  • 발행 : 2005.12.31

초록

최근 들어 3차원 전산화 단층 촬영(CT, Computed Tomography) 영상을 이용한 진단기법의 개발을 위한 연구가 활발히 진행되고 있으며 여러 분야에서 3차원적인 두개악안면 분석의 필요성이 증대되고 있다. 특히 교정 치료나 악교정 수술 후의 결과에 있어서 안면 연조직의 분석은 필수적이라 할 것이다. 본 연구에서는 정상교합을 가진 성인 남자 12명, 성인 여자 11명의 CT 영상을 촬영하여 개인용 컴퓨터 상에서 V works 4.0 프로그램(Cybermed Inc., Seoul, Korea)으로 3차원 CT 연조직 영상을 재구성한 후에 soft tissue Nasion을 기준 원점으로 하는 3차원 좌표평면의 좌표계를 설정하여 정중선상의 soft tissue Nasion. Pronasale, Subnasale, Upper lip center, Lower lip center, soft tissue B. soft tissue Pogonion. soft tissue Menton 등 8개의 계측점과 양측성인 Eudocanthion, Alare lateralis, Cheilion, soft tissue Gonion, Tragus. Zygomatic point등 총 20개의 재현 가능한 안면 연조직의 계측점을 지정하였으며 V surgery 프로그램(Cybermed Inc., Seoul Korea)을 이용하여 이들 계측점의 3차원적인 좌표와 기준 원점으로부터 각 계측점까지의 Net (${\delta}=\sqrt{{X^2}+{Y^2}+{Z^2}}$) 값의 평균과 표준편차를 구하였다. 안면 연조직 분석의 3차원적인 이해를 돕기 위해 주요 계측점 간의 거리 계측을 시행하였고, 그 결과 Na'-Sn과 En (Rt)-En(Lt)를 제외한 대부분의 계측값에서 남녀간의 유의한 차이가 있었으며, 2차원적인 두부 방사선 규격사진이나 안면 사진으로는 정확한 계측이 어려웠던 Na'-Zy, Na'-Ch, Na'-Go'(facial depth) 등의 정상치도 구하였다. 이상의 자료는 부정교합 환자와 악안면 기형 환자의 3차원적인 진단 및 치료 계획에 참고자료로 사용될 수 있을 것이다.

Studies for diagnostic analysis using three-dimensional (3D) CT images are recently in progress and needs for 3D craniofacial analysis are increasing in the fields of orthodontics. It is especially essential to analyze the facial soft tissue after orthodontic treatment and orthognathic surgery. In this study 3D CT images of adults with normal occlusion were taken to analyze the facial soft tissue. Norms were obtained from CT images of adults with normal occlusion (12 males, 11 females) using a computer program named V works 4.0 program. 3D coordinate planes were established using soft tissue Nasion as the reference point and a total of 20 reproducible landmarks of facial soft tissue were obtained using the multiple reconstructive sectional images (axial, sagittal and coronal images) of the V works 4.0 program: soft tissue Nasion, Pronasale, Subnasale, Upper lip center, Lower lip center, soft tissue B, soft tissue Pogonion, soft tissue Menton, Endocanthion (Rt/Lt), Alare lateralis (Rt/Lt), Cheilion (Rt/Lt), soft tissue Gonion (Rt/Lt), Tragus (Rt/Lt), and Zygomatic point (Rt/Lt). According to the established landmarks and measuring method, the 3D CT images of adults with normal occlusion were measured and the normal positional measurements and their Net (${\delta}=\sqrt{{X^2}+{Y^2}+{Z^2}}$) values were obtained using V surgery program, In the linear measurement between landmarks, there was a significant difference between males and females except Na' -Sn and En(Rt)-En(Lt). The normal ranges of Na'-Zy, Na'-Ch and Na'-Go' (facial depth) were obtained, which was difficult to measure by two-dimensional (2D) cephalometric analysis and facial photographs. These data may be used as references for 3D diagnosis and treatment planning for patients with malocclusion and dentofacial deformity.

키워드

참고문헌

  1. Broadbent BH. A new x-ray technique and its application to orthodontia. Angle Orthod 1931;1:45-66
  2. Athanasiou AE. Orthodontic Cephalometry. London: Mosby-Wolfe; 1997. p. 125-40
  3. Hatcher DC. Science and Practice of Occlusion. Chicago: Quintessence: 1997. p. 349-64
  4. Vig PS. Orthodontic controversies: Their origins, consequences, and resolution. In: Melsen B, ed. Current Controversies in Orthodontics. Chicago: Quintessence: 1991. p. 269-310
  5. Baumrind S, Frantz RC. The reliability of head film measurements: 2. Conventional angular and linear measures. Am J Orthod 1971;60:505-17 https://doi.org/10.1016/0002-9416(71)90116-3
  6. Bergersen EO. Enlargement and distortion in cephalometric radiography: Compensation tables for linear measurements. Angle Orthod 1980;50: 230-44
  7. Jarvinen S. A study of the factors causing differences in the relative variability of linear radiographic cephalometric measurements. Am J Orthod Dentofacial Orthop 1987;92:17-23 https://doi.org/10.1016/0889-5406(87)90291-5
  8. Mitani H, Brodie AG. Three plane analysis of tooth movement, growth, and angular changes with cervical traction. Angle Orthod 1970:40:80-94
  9. Tsao DH, Kazanoglu A, McCasland JP. Measurability of radiographic images. Am J Orthod 1983:84:212-6 https://doi.org/10.1016/0002-9416(83)90128-8
  10. Carls FR, Schuknecht B, Sailer HF. Value of three-dimensional computed tomography in craniofacial surgery. J Craniofac Surg 1994; 5:282-8 https://doi.org/10.1097/00001665-199411000-00003
  11. Darling CF, Byrd SE, Allen ED, Radkowski MA, Wikzynski MA. Three-dimensional computed tomography imaging in the evaluation of craniofacial abnormalities. J Natl Med Assoc 1994:86:676-80
  12. Matteson SR, Bechtold W, Phillips C, Staab EV. A method for threedimensional image reformation for quantitative cephalometric analysis. J Oral Maxillofac Surg 1989:47:1053-6l https://doi.org/10.1016/0278-2391(89)90180-8
  13. 김기덕, 김희진, 한승호, 박창서. 3차원영상 전산화단층촬영을 이용한 한국인 아래턱뼈의 체질인류학적 연구-3차원영상의 정확도 평가. 대한체질인류학회지 1999;12:13-22
  14. Cavalcanti MG, Vannier MW. Quantitative analysis of spiral computed tomography for craniofacial clinical applications. Dentomaxillofac Radiol 1998;27:344-50 https://doi.org/10.1038/sj.dmfr.4600389
  15. Hildebolt CF, Vannier MW. Three-dimensional measurement accuracy of skull surface landmarks. Am J Phys Anthropol 1988;76:497-503 https://doi.org/10.1002/ajpa.1330760409
  16. Hildebolt CF, Vannier MW, Knapp RH. Validation study of skull three -dimensional computed tomography measurements. Am J Phys Anthropol 1990;82:283-94 https://doi.org/10.1002/ajpa.1330820307
  17. 전국진, 박 혁, 이희철, 김기덕, 박창서. 개인용 컴퓨터에서 재구성한 3차원 전산화단층영상의 두부계측 재현성, 대구악안방사선지 2003;33; 171-8
  18. 장혜숙, 백형선. 3차원 CT 영상을 이용한 두개악안면 분석을 위한 계측점의 제안. 대치교정지 2002;32;313-25
  19. 문제상. 3차원 CT 영상을 이용한 정상교합자의 두개악안연 분석 석사학위논문, 연세대학교 대학원, 서울, 2002
  20. Alberti C. Three-dimensional CT and structure models. Br J Radiol 1980;53:261-2
  21. Hemmy DC, David DJ, Herman GT. Three-dimensional reconstruction of craniofacial deformity using computed tomography. Neurosurgery 1983;13:534-41 https://doi.org/10.1227/00006123-198311000-00009
  22. Kragskov J, Sindet PS, Glydensted C, Jensen KL. A comparison of three-dimensional computed tomography scans and stcreolithographic models for evaluation of craniofacial anomalies. J Oral Maxillofac Surg 1996;54:402-1l https://doi.org/10.1016/S0278-2391(96)90109-3
  23. Altobelli DE, Kikinis R, Mulliken JB, Cline H, Lorensen W, Jolesz F. Computer assisted three-dimensional planning in craniofacial surgery. Plast Reconstr Surg 1993;92:576-85 https://doi.org/10.1097/00006534-199309001-00003
  24. Vannier MW, Marsh JL, Warren JO, James OW. Three-dimensional CT reconstruction images for craniofacial planning and evaluation. Radiology 1984;150:179-84 https://doi.org/10.1148/radiology.150.1.6689758
  25. 배수현, 김선호, 유선국. PC 기반의 3차원 의료영상 재구성 시스템의 고속화 설계. 대한의용공학지 1998;19:189-97
  26. Udupa JK, Hung HM, Chuang KS. Surface and volume rendering in three-dimensional imaging: A comparison. J Digital Imaging 1991 ;4: 159-68 https://doi.org/10.1007/BF03168161
  27. Kim KD, Ruprecht A, Jeon KJ, Park CS. Personal computer-based three dimensional computed tomographic images of the teeth for evaluating supernumerary or ectopically impacted teeth. Angle Orthod 2003;73:614-21
  28. 강복희, 김기덕, 박창서. 전산화단층촬영 단말장치와 개인용 컴퓨터에서 재구성한 두부 3차원 전산화단층영상의 비교, 대구악안방사선지 2001; 31:1-7