DOI QR코드

DOI QR Code

Structural and Conformational Studies of ortho-, meta-, and para-Methyl Red upon Proton Gain and Loss

  • Park, Sun-Kyung (Thin Film Materials Laboratory, Advanced Marterials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Choong-Keun (Department of Chemistry, Chungbuk National University) ;
  • Min, Kyung-Chul (Department of Chemistry, Chungbuk National University) ;
  • Lee, Nam-Soo (Department of Chemistry, Chungbuk National University)
  • Published : 2005.08.20

Abstract

The structures and conformations of ortho-, meta-, and para-methyl red (MR) upon proton gain and loss were studied by density functional calculations, and compared to methyl yellow for the effects of a carboxyl substitution. Internal hydrogen bonding causes the geometry of neutral o-MR planar, otherwise twist. Monoprotonated species of MR are planar where the proton is attached to $\beta$-azo nitrogen. This loses its azo character a bit, and shows strong delocalization characterized as a quinonoid canonical structure. Di-protonated species of MR is proved to hold two protons at the amino and $\alpha$-azo nitrogen atoms, and planar. It regains somewhat of its azo character, but still shows fairly delocalized property in terms of carbocationic canonical structures. The carboxyl substitution on 4-dimethylamino-trans-azobenzene structure has some delocalization effects on the geometry or conformation of MR derivatives whether neutral, mono-, di- or de-protonated.

Keywords

References

  1. Ucar, M.; Solak, A. O.; Menek, N. Anal. Sci. 2002, 18, 997 https://doi.org/10.2116/analsci.18.997
  2. Ucar, M.; Solak, A. O.; Aksu, M. L.; Toy, M. Turk. J. Chem. 2002, 26, 509
  3. Barek, J.; Cvacka, J.; Muck, A.; Quaiserová, V.; Zima, J. Fresenius' J. Anal. Chem. 2001, 369, 556 https://doi.org/10.1007/s002160100707
  4. Terazima, M.; Okamoto, K.; Hirota, N. J. Phys. Chem. 1993, 97, 5188 https://doi.org/10.1021/j100121a056
  5. Park, S.-K.; Lee, C.-K.; Lee, S.-H.; Lee, N.-S. Bull. Korean Chem. Soc. 2002, 23, 253 https://doi.org/10.5012/bkcs.2002.23.2.253
  6. Park, S.-K.; Lee, N.-S.; Lee, S.-H. Bull. Korean Chem. Soc. 2000, 21, 959
  7. Kim, S. H.; Kim, S. K. Bull. Korean Chem. Soc. 1996, 17, 365 https://doi.org/10.1007/BF02699054
  8. Kim, S. H.; Kim, S. K.; Choi, M.; Kim, H. Bull. Korean Chem. Soc. 1996, 17, 217 https://doi.org/10.1007/BF02707146
  9. Brianso, J. L.; Solans, X.; Vicente, J. J. Chem. Soc. Dalton Trans. 1983, 169
  10. Simoni, F.; Lucchetti, L.; Lucchetta, D. E.; Francescangeli, O. Opt. Express 2001, 9, 85 https://doi.org/10.1364/OE.9.000085
  11. Shih, M. Y.; Shishido, A.; Khoo, I. C. Opt. Lett. 1997, 22, 1424 https://doi.org/10.1364/OL.22.001424
  12. Moreiras, D.; Sloans, J.; Sloans, X.; Miravitlles, C.; German, G.; Declercq, J. P. Cryst. Struct. Commun. 1980, 9, 921
  13. Bouwstra, J. A.; Schouten, A.; Kroon, J. Acta Crystallogr. Sect. C 1983, 39, 1121 https://doi.org/10.1107/S0108270183007611
  14. Sasaki, C.; Kitoh, S.-I.; Yamada, K.; Hayashi, H.; Kunimoto, K.- K. Anal. Sci. 2004, 20, x117 https://doi.org/10.2116/analscix.20.x117
  15. Sasaki, C.; Kitoh, S.-I.; Yamada, K.; Kunimoto, K.-K.; Maeda, S.; Kuwae, A.; Hanai, K. Anal. Sci. 2003, 19, x1 https://doi.org/10.2116/analscix.19.x1
  16. Park, H. S.; Sung, J.; Chang, T. Macromolecules 1996, 29, 3216 https://doi.org/10.1021/ma951666u
  17. Lee, J.; Park, K.; Chang, T.; Jung, J. C. Macromolecules 1992, 25, 6977 https://doi.org/10.1021/ma00051a039
  18. Park, H. S.; Oh, K. S.; Kim, K. S.; Chang, T.; Spiegel, D. R. J. Phys. Chem. B 1999, 103, 2355 https://doi.org/10.1021/jp9838442
  19. Rottman, C.; Turniansky, A.; Avnir, D. J. Sol-Gel Sci. Technol. 1998, 13, 17 https://doi.org/10.1023/A:1008630701220
  20. Bachackashvilli, A.; Katz, B.; Priel, Z.; Efrima, S. J. Phys. Chem. 1984, 88, 6185 https://doi.org/10.1021/j150669a026
  21. Machida, K.; Lee, H.; Kuwae, A. J. Raman Spectrosc. 1980, 9, 198 https://doi.org/10.1002/jrs.1250090314
  22. Machida, K.; Lee, H.; Uno, T. J. Raman Spectrosc. 1978, 7, 184 https://doi.org/10.1002/jrs.1250070404
  23. Uno, T.; Lee, H.; Saito, Y.; Machida, K. Spectrochim. Acta 1976, 32A, 1319 https://doi.org/10.1016/0584-8539(76)80172-9
  24. Lee, H.; Machida, K.; Kuwae, A.; Harada, I. J. Raman Spectrosc. 1983, 14, 126 https://doi.org/10.1002/jrs.1250140213
  25. Park, S.-K.; Lee, C.; Min, K.-C.; Lee, N.-S. Bull. Korean Chem. Soc. 2004, 25, 1817 https://doi.org/10.5012/bkcs.2004.25.12.1817
  26. Park, S.-K. Ph.D. dissertation, Chungbuk National University, 2005
  27. Bisset, A.; Dines, T. J. J. Chem. Soc. Faraday Trans. 1995, 91, 499 https://doi.org/10.1039/ft9959100499
  28. Bisset, A.; Dines, T. J. J. Raman Spectrosc. 1995, 26, 791 https://doi.org/10.1002/jrs.1250260829
  29. Bisset, A.; Dines, T. J. J. Chem. Soc. Faraday Trans. 1997, 93, 1629 https://doi.org/10.1039/a606469h
  30. Bell, S.; Bisset, A.; Dines, T. J. J. Raman Spectrosc. 1998, 29, 447 https://doi.org/10.1002/(SICI)1097-4555(199806)29:6<447::AID-JRS265>3.0.CO;2-R
  31. Lee, H.; Machida, K.; Kuwae, A.; Saito, Y. J. Mol. Struct. 1980, 68, 51 https://doi.org/10.1016/0022-2860(80)80256-0
  32. Kuroda, Y.; Lee, H.; Kuwae, A. J. Phys. Chem. 1980, 84, 3417 https://doi.org/10.1021/j100462a021
  33. Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: Weinheim, 2000
  34. Biswas, N.; Umapathy, S. J. Phys. Chem. A 1997, 101, 5555 https://doi.org/10.1021/jp970312x
  35. Han, Y.-K.; Lee, S. U. Bull. Korean Chem. Soc. 2005, 26, 43 https://doi.org/10.5012/bkcs.2005.26.1.043
  36. Lee, S. Y. Bull. Korean Chem. Soc. 2004, 25, 1855 https://doi.org/10.5012/bkcs.2004.25.12.1855
  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Riga, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyoda, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2003

Cited by

  1. Reversible Changes in Solution pH Resulting from Changes in Thermoresponsive Polymer Solubility vol.134, pp.17, 2012, https://doi.org/10.1021/ja211315e
  2. Atmospheric Pressure Plasma Degradation of Azo Dyes in Water: pH and Structural Effects vol.33, pp.6, 2013, https://doi.org/10.1007/s11090-013-9483-3
  3. Equilibrium and Structural Study of m-Methyl Red in Aqueous Solutions: Distribution Diagram Construction vol.42, pp.9, 2013, https://doi.org/10.1007/s10953-013-0068-9
  4. A thermodynamic study of α-, β-, and γ-cyclodextrin-complexed m-methyl red in alkaline solutions vol.77, pp.1-4, 2013, https://doi.org/10.1007/s10847-012-0221-x
  5. Development of a Chemiresistor Sensor Based on Polymers-Dye Blend for Detection of Ethanol Vapor vol.10, pp.4, 2010, https://doi.org/10.3390/s100402812
  6. Phosphate Functional Core-Shell Polymer Nanoparticles for the Release of Vascular Endothelial Growth Factor vol.10, pp.13, 2009, https://doi.org/10.1002/cbic.200900383
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. pH-dependent fluorescence property of methyl red isomers in silver colloids vol.407, pp.2, 2005, https://doi.org/10.1016/j.physb.2011.10.036
  9. Visible Light-Triggered Capture and Release of CO2 from Stable Metal Organic Frameworks vol.27, pp.23, 2005, https://doi.org/10.1021/acs.chemmater.5b02211