DOI QR코드

DOI QR Code

Excitation Energy Migration in Multiporphyrin Arrays

  • Hwang, In-Wook (National Creative Research Initiatives Center for Ultrafast Optical Chearacterisitcs Control and Department of Chemistry, Yonsei University) ;
  • Aratani, Naoki (Department of Chemistry and Core Research for Evolutional Science and Technology (CREST), Kyoto University) ;
  • Osuka, Atsuhiro (Department of Chemistry and Core Research for Evolutional Science and Technology (CREST), Kyoto University) ;
  • Kim, Dong-Ho (National Creative Research Initiatives Center for Ultrafast Optical Chearacterisitcs Control and Department of Chemistry, Yonsei University)
  • Published : 2005.01.20

Abstract

During the last decade, the exploration of nanoscale device and circuitry based on molecules has gained increasing interest. In parallel with this, considerable effort is being devoted to the development of molecular photonic/electronic materials based on various porphyrin arrays. This involves light as an input/output signal and excitation energy migration as a mechanism for signal transmission. Absorption of a photon at the light collector end of the porphyrin array yields the excited state, which migrates among the intervening pigments until reaching the emitter, whereupon another photon is emitted. As a consequence, it is relevant to understand the excitation energy transfer (EET) processes occurring in various forms of porphyrin arrays for the applications as artificial light harvesting arrays and molecular photonic/electronic wires. Since the excitonic (dipole) and electronic (conjugation) couplings between the adjacent porphyrin moieties in porphyrin arrays govern the EET processes, we have characterized the EET rates of various forms of multiporphyrin arrays (linear, cyclic, and box) based on various time-resolved spectroscopic measurements. We believe that our observations provide a platform for further development of molecular photonic/electronic materials based on porphyrin arrays.

Keywords

References

  1. McDermott, G. M.; Prince, S. M.; Freer, A. A.; Hawthonthwaite- Lawless, A. M.; Papiz, M. Z.; Cogdell. R. J.; Isaacs, M. W. Nature 1995, 374, 517 https://doi.org/10.1038/374517a0
  2. Pullerits, T.; Sundstrom, V. Acc. Chem. Res. 1996, 29, 381 https://doi.org/10.1021/ar950110o
  3. Holten, D.; Bocian, D. F.; Lindsey, J. S. Acc. Chem. Res. 2002, 35, 57 and references are therein https://doi.org/10.1021/ar970264z
  4. Kim, D.; Osuka, A. Acc. Chem. Res. 2004, 37, 735 and references are therein https://doi.org/10.1021/ar030242e
  5. Kim, D.; Osuka, A. J. Phys. Chem. A 2003, 107, 8791 and references are therein https://doi.org/10.1021/jp030490s
  6. Song, N. W.; Cho, H. S.; Yoon, M.-C.; Aratani, N.; Osuka, A.; Kim, D. Bull. Korean Chem. Soc. 2002, 23, 271 https://doi.org/10.1007/BF02705726
  7. Cho, H. S.; Rhee, H.; Song, J. K.; Min, C.-K.; Takase, M.; Aratani, N.; Cho, S.; Osuka, A.; Joo, T.; Kim, D. J. Am. Chem. Soc. 2003, 125, 5849 https://doi.org/10.1021/ja021476g
  8. Hayashi, T.; Ogoshi, H. Chem. Soc. Rev. 1997, 26, 355 https://doi.org/10.1039/cs9972600355
  9. Imamura, T.; Fukushima, K. Coord. Chem. Rev. 2000, 198, 133
  10. Wojaczynski, J.; Latos-Grazynski, L. Coord. Chem. Rev. 2000, 204, 113
  11. Chernook, A. V.; Rempel, U.; van Borczyskowski, C.; Shulga, A. M.; Zenkevich, E. I. Chem. Phys. Lett. 1996, 254, 229 https://doi.org/10.1016/0009-2614(96)00244-8
  12. Flamigni, L.; Johnson, M. R. New. J. Chem. 2001, 25, 1368 https://doi.org/10.1039/b108271j
  13. Hartnell, R. D.; Arnold, D. P. Organometallics 2004, 23, 391 https://doi.org/10.1021/om0305869
  14. Aratani, N.; Osuka, A.; Kim, D.; Kim, Y. H.; Jeong, D. H. Angew. Chem. Int. Ed. 2000, 39, 1458 https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1458::AID-ANIE1458>3.0.CO;2-E
  15. Cho, H. S.; Song, N. W.; Kim, Y. H.; Jeoung, S. C.; Hahn, S.; Kim, D.; Kim, S. K.; Yoshida, N.; Osuka, A. J. Phys. Chem. A 2000, 104, 3287 https://doi.org/10.1021/jp9942623
  16. Kim, Y. H.; Jeong, D. H.; Kim, D.; Jeoung, S. C.; Cho, H. S.; Kim, S. K.; Aratani, N.; Osuka, A. J. Am. Chem. Soc. 2001, 123, 76 https://doi.org/10.1021/ja0009976
  17. Kim, Y. H.; Cho, H. S.; Kim, D.; Kim, S. K.; Yoshida, N.; Osuka, A. Syn. Metal 2001, 117, 183 https://doi.org/10.1016/S0379-6779(00)00497-5
  18. Aratani, N.; Osuka, A.; Cho, H. S.; Kim, D. J. Photochem. Photobiol. C: Photochem. Rev. 2002, 3, 25 https://doi.org/10.1016/S1389-5567(02)00003-5
  19. Min, C.-K.; Joo, T.; Yoon, M.-C.; Kim, C. M.; Hwang, Y. N.; Kim, D.; Aratani, N.; Yoshida, N.; Osuka, A. J. Chem. Phys. 2001, 114, 6750 https://doi.org/10.1063/1.1357438
  20. Cho, H. S.; Jeong, D. H.; Yoon, M.-C.; Kim, Y.-R.; Kim, D.; Jeoung, S. C.; Kim, S. K.; Aratani, N.; Shinmori, H.; Osuka, A. J. Phys. Chem. A 2001, 105, 4200 https://doi.org/10.1021/jp010385n
  21. Jeong, D. H.; Yoon, M.-C.; Jang, S. M.; Kim, D.; Cho, D. W.; Yoshida, N.; Aratani, N.; Osuka, A. J. Phys. Chem. A 2002, 106, 2359 https://doi.org/10.1021/jp0132331
  22. Aratani, N.; Cho, H. S.; Ahn, T. K.; Cho, S.; Kim, D.; Sumi, H.; Osuka, A. J. Am. Chem. Soc. 2003, 125, 9668 https://doi.org/10.1021/ja030002u
  23. Yoon, M.-C.; Song, J. K.; Cho, S.; Kim, D. Bull. Korean Chem. Soc. 2003, 24, 1075 https://doi.org/10.5012/bkcs.2003.24.8.1075
  24. Song, N. W.; Cho, H. S.; Yoon, M.-C.; Jeoung, S. C.; Yoshida, N.; Osuka, A.; Kim, D. Bull. Korean Chem. Soc. 2002, 75, 1023 https://doi.org/10.1246/bcsj.75.1023
  25. Tsuda, A.; Osuka, A. Science 2001, 293, 79 https://doi.org/10.1126/science.1059552
  26. Cho, H. S.; Jeong, D. H.; Cho, S.; Kim, D.; Matsuzaki, Y.; Tanaka, K.; Tsuda, A.; Osuka, A. J. Am. Chem. Soc. 2002, 124, 14642 https://doi.org/10.1021/ja020826w
  27. Jeong, D. H.; Jang, S. M.; Hwang, I.-W.; Kim, D.; Matsuzaki, Y.; Tanaka, K.; Tsuda, A.; Nakamura, T.; Osuka, A. J. Chem. Phys. 2003, 119, 5237 https://doi.org/10.1063/1.1596854
  28. Kasha, M. Radiation Res. 1963, 20, 55 https://doi.org/10.2307/3571331
  29. Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. Pure Appl. Chem. 1965, 11, 371 https://doi.org/10.1351/pac196511030371
  30. Scholes, G. D.; Ghiggino, K. P. J. Phys. Chem. 1994, 98, 4580 https://doi.org/10.1021/j100068a017
  31. Kakitani, T.; Kimura, A. J. Phys. Chem. A 2002, 106, 2173 https://doi.org/10.1021/jp012516q
  32. Kimura, A.; Kakitani, T.; Yamato, T. J. Phys. Chem. B 2000, 104, 9276 https://doi.org/10.1021/jp000589o
  33. Ha, J.-H.; Cho, H. S.; Song, J. K.; Kim, D.; Aratani, N.; Osuka, A. Chem. Phys. Chem. 2004, 5, 57
  34. Yoon, D. H.; Lee, S. B.; Yoo, K.-H.; Kim, J.; Lim, J. K.; Aratani, N.; Tsuda, A.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2003, 125, 11062 https://doi.org/10.1021/ja0346429
  35. Peng, X.; Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.; Hwang, I.-W.; Ahn, T. K.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2004, 126, 4468 https://doi.org/10.1021/ja0392972
  36. Nakamura, Y.; Hwang, I.-W.; Aratani, N.; Ahn, T. K.; Ko, D. M.; Takagi, A.; Kawai, T.; Matsumoto, T.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2005, 127, 236 https://doi.org/10.1021/ja045254p
  37. Yoshida, N.; Jeong, D. H.; Cho, H. S.; Kim, D.; Matsuzaki, Y.; Tanaka, K.; Osuka, A. Chem. Eur. J. 2003, 9, 58 https://doi.org/10.1002/chem.200390004
  38. Jeong, D. H.; Jang, S. M.; Hwang, I.-W.; Kim, D.; Yoshida, N.; Osuka, A. J. Phys. Chem. A 2002, 106, 11054 https://doi.org/10.1021/jp021439b
  39. Cho, H. S.; Song, J. K.; Ha, J.-H.; Cho, S.; Kim, D.; Yoshida, N.; Osuka, A. J. Phys. Chem. A 2003, 107, 1897 https://doi.org/10.1021/jp022480h
  40. Shinmori, H.; Ahn, T. K.; Cho, H. S.; Kim, D.; Yoshida, N.; Osuka, A. Angew. Chem. Int. Ed. 2003, 42, 2754 https://doi.org/10.1002/anie.200351177
  41. Bradforth, S. E.; Jimenez, R.; van Mourik, F.; van Grondelle, R.; Fleming, G. R. J. Phys. Chem. 1995, 99, 16179 https://doi.org/10.1021/j100043a071
  42. Trinkunas, G.; Herek, J. L.; Polívka, T.; Sundstrom, V.; Pullerits, T. Phys. Rev. Lett. 2001, 86, 4167 https://doi.org/10.1103/PhysRevLett.86.4167
  43. Trinkunas, G. J. Luminescence 2003, 102, 532 https://doi.org/10.1016/S0022-2313(02)00594-X
  44. Bruggemann, B.; May, V. J. Chem. Phys. 2004, 120, 2325 https://doi.org/10.1063/1.1637585
  45. Muller, M. G.; Hucke, M.; Reus, M.; Holzwarth, A. R. J. Phys. Chem. 1996, 100, 9537 https://doi.org/10.1021/jp953715a
  46. Bruggemann, B.; Herek, J. L.; Sundstrom, V.; Pullerits, T.; May, V. J. Phys. Chem. B 2001, 105, 11391 https://doi.org/10.1021/jp012072y
  47. Tsuda, A.; Nakamura, T.; Sakamoto, S.; Yamaguchi, K.; Osuka, A. Angew. Chem. Int. Ed. 2002, 41, 2817 https://doi.org/10.1002/1521-3773(20020802)41:15<2817::AID-ANIE2817>3.0.CO;2-0
  48. Hwang, I.- W.; Cho, H. S.; Jeong, D. H.; Kim, D.; Tsuda, A.; Nakamura, T.; Osuka, A. J. Phys. Chem. B 2003, 107, 9977 https://doi.org/10.1021/jp022625k
  49. Hwang, I.-W.; Kamada, T.; Ahn, T. K.; Ko, D. M.; Nakamura, T.; Tsuda, A.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2004, 126, 16187 https://doi.org/10.1021/ja046241e
  50. Yatskou, M. M.; Koehorst, R. B. M.; Donker, H.; Schaafsma, T. J. J. Phys. Chem. A 2001, 105, 11425 https://doi.org/10.1021/jp010410p

Cited by

  1. Length Dependence for Intramolecular Energy Transfer in Three- and Four-Color Donor−Spacer−Acceptor Arrays vol.131, pp.37, 2009, https://doi.org/10.1021/ja9038856
  2. Excited-state energy relaxation dynamics of triply linked Zn(ii) porphyrin arrays vol.47, pp.15, 2011, https://doi.org/10.1039/c1cc10521c
  3. Functional porphyrinic metal–organic frameworks: crystal engineering and applications vol.41, pp.14, 2012, https://doi.org/10.1039/c2dt11989g
  4. A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs vol.136, pp.40, 2014, https://doi.org/10.1021/ja507269n
  5. A bifurcated molecular pentad capable of sequential electronic energy transfer and intramolecular charge transfer vol.17, pp.39, 2015, https://doi.org/10.1039/C5CP03932K
  6. material: a rare example of a coordination polymer exhibiting triplet–triplet annihilation vol.18, pp.36, 2016, https://doi.org/10.1039/C6CP04728A
  7. Excitation wavelength-dependent EPR study on the influence of the conformation of multiporphyrin arrays on triplet state delocalization vol.18, pp.7, 2016, https://doi.org/10.1039/C5CP07424J
  8. Spectroscopic and Theoretical Characterization of Through-Space Conjugation of Foldamers with a Tetraphenylethene Hinge pp.09476539, 2017, https://doi.org/10.1002/chem.201704182
  9. Synthesis of Nanometer-Scale Porphyrin Wheels of Variable Size vol.14, pp.2, 2008, https://doi.org/10.1002/chem.200701271
  10. Large Two-Photon Absorption (TPA) Cross-Section of Directly Linked Fused Diporphyrins vol.109, pp.13, 2005, https://doi.org/10.1021/jp050747h
  11. Correlation of Fluorescence Anisotropy Decay with Molecular Size and Shape of Covalently and Noncovalently Bound Large Porphyrin Arrays vol.53, pp.1, 2006, https://doi.org/10.1002/jccs.200600005
  12. Intramolecular Energy Transfer in a Bichromophoric System, Zinc meso-Tetratolylporphyrin Covalently Linked to Anthracene through Ethylene Linkage vol.27, pp.5, 2005, https://doi.org/10.5012/bkcs.2006.27.5.751
  13. Polarity Probing Two-Photon Fluorophores Based on [2.2]Paracyclophane vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2253
  14. Photoinduced energy and electron transfer in 1,8-naphthalimide–corrole dyads vol.31, pp.2, 2005, https://doi.org/10.1039/b613640k
  15. Molecular tweezer based on zinc porphyrin-substituted diarylethene vol.68, pp.3, 2007, https://doi.org/10.1016/j.saa.2006.12.027
  16. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  17. Oxidative Annulation of β‐Aminoporphyrins into Pyrazine‐Fused Diporphyrins vol.124, pp.12, 2012, https://doi.org/10.1002/ange.201108037
  18. Oxidative Annulation of β‐Aminoporphyrins into Pyrazine‐Fused Diporphyrins vol.51, pp.12, 2005, https://doi.org/10.1002/anie.201108037