DOI QR코드

DOI QR Code

Construction of an Improved Tandem Time-of-flight Mass Spectrometer for Photodissociation of Ions Generated by Matrix-assisted Laser Desorption Ionization (MALDI)

  • Moon, Jeong-Hee (National Creative Research Initiative Center for Control of Reaction Dynamics and School of Chemistry, Seoul National University) ;
  • Yoon, So-Hee (National Creative Research Initiative Center for Control of Reaction Dynamics and School of Chemistry, Seoul National University) ;
  • Kim, Myung-Soo (National Creative Research Initiative Center for Control of Reaction Dynamics and School of Chemistry, Seoul National University)
  • Published : 2005.05.20

Abstract

An improved tandem time-of-flight (TOF) mass spectrometer for the photodissociation (PD) study of ions generated by matrix-assisted laser desorption ionization (MALDI), MALDI-TOF-PD-TOF, has been designed and constructed. Recording a full spectrum with better than unit mass resolution even in low mass range has been achieved without reflectron voltage stepping which was needed in the previous version. Other aspects of the improvement, such as those in the data system which now allow 10-100 times faster spectral acquisition than with the previous instrument, are described. Rationale for the ideas which have led to the improvements is presented also.

Keywords

References

  1. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151 https://doi.org/10.1002/rcm.1290020802
  2. Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53 https://doi.org/10.1016/0168-1176(87)87041-6
  3. Kaufmann, R.; Kirsch, D.; Spengler, B. Int. J. Mass Spectrom. Ion Processes 1994, 131, 355 https://doi.org/10.1016/0168-1176(93)03876-N
  4. Franzen, J.; Frey, R.; Holle, A.; Krauter, K. O. Int. J. Mass Spectrom. 2001, 206, 275 https://doi.org/10.1016/S1387-3806(01)00355-4
  5. Hettick, J. M.; McCurdy, D. L.; Barbacci, D. C.; Ruessell, D. H. Anal. Chem. 2001, 73, 5378 https://doi.org/10.1021/ac0102157
  6. Guan, Z.; Kelleher, N. L.; O'Connor, P. B.; Aaserud, D. J.; Little, D. P.; McLafferty, F. W. Int. J. Mass Spectrom. Ion Processes 1996, 157/158, 357
  7. Preisler, J.; Yeung, E. S. Anal. Chem. 1997, 69, 4390 https://doi.org/10.1021/ac970248f
  8. Thompson, M. S.; Cui, W.; Reilly, J. P. Angew. Chem. Int. Ed. 2004, 43, 4791
  9. Park, S. T.; Kim, S. K.; Kim, M. S. Nature 2002, 415, 306-308 https://doi.org/10.1038/415306a
  10. Oh, J. Y.; Moon, J. H.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2004, 15, 1248-1259 https://doi.org/10.1016/j.jasms.2004.05.003
  11. Oh, J. Y.; Moon, J. H.; Kim, M. S. Rapid Commun. Mass Spctrom. 2004, 18, 2706-2712 https://doi.org/10.1002/rcm.1679
  12. Mamyrin, B. A.; Karataev, V. I.; Shmik, D. V.; Zagulin, V. A. Sov. Phys. JETP 1973, 37, 45-48
  13. Rockwood, A. L. 34th Annual Conference on Mass Spectrometry and Allied Topics; Cincinnati, OH, 1986
  14. Medzihradszky, K. F.; Campbell, J. M.; Baldwin, M. A.; Falick, A. M.; Juhasz, P.; Vestal, M. L.; Burlingame, A. L. Anal. Chem. 2000, 72, 552 https://doi.org/10.1021/ac990809y
  15. Cotter, R. J. Time-of-Flight Mass Spectrometry; ACS: Washington, U. S. A., 1997; p 47
  16. Dahl, D. A. SIMION 3D version 7.0; Idaho Falls, ID, 2000
  17. Vestal, M.; Juhasz, P. J. Am. Soc. Mass Spectrom. 1998, 9, 892 https://doi.org/10.1016/S1044-0305(98)00069-5
  18. Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley-Interscience: New York, 1972; pp 1-108
  19. Forst, W. Theory of Unimolecular Reactions; Aacademic Press: New York, 1973; pp 3-70

Cited by

  1. Characteristics of photodissociation at 193 nm of singly protonated peptides generated by matrix-assisted laser desorption ionization (MALDI) vol.17, pp.12, 2006, https://doi.org/10.1016/j.jasms.2006.07.021
  2. Development of a time-resolved method for photodissociation mechanistic study of protonated peptides: Use of a voltage-floated cell in a tandem time-of-flight mass spectrometer vol.18, pp.10, 2007, https://doi.org/10.1016/j.jasms.2007.07.010
  3. Time-resolved photodissociation study of singly protonated peptides with a histidine residue generated by matrix-assisted laser desorption ionization: Dissociation rate constant and internal temperature vol.20, pp.8, 2009, https://doi.org/10.1016/j.jasms.2009.04.008
  4. Observation of phosphorylation site-specific dissociation of singly protonated phosphopeptides vol.21, pp.1, 2010, https://doi.org/10.1016/j.jasms.2009.09.003
  5. Dissociation kinetics of singly protonated leucine enkephalin investigated by time-resolved photodissociation tandem mass spectrometry vol.21, pp.7, 2010, https://doi.org/10.1016/j.jasms.2010.03.025
  6. Expansion Cooling in the Matrix Plume is Under-Recognized in MALDI Mass Spectrometry vol.22, pp.6, 2011, https://doi.org/10.1007/s13361-011-0115-y
  7. A Simple Method for Quantification of Peptides and Proteins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry vol.84, pp.23, 2012, https://doi.org/10.1021/ac302807u
  8. A deflection system to reduce the interference from post-source decay product ions in photodissociation tandem time-of-flight mass spectrometry vol.20, pp.14, 2006, https://doi.org/10.1002/rcm.2584
  9. Current literature in mass spectrometry vol.41, pp.8, 2006, https://doi.org/10.1002/jms.955
  10. Photodissociation at 193 nm of some singly protonated peptides and proteins withm/z 2000–9000 using a tandem time-of-flight mass spectrometer equipped with a second source for delayed extraction/post-acceleration of product ions vol.21, pp.3, 2007, https://doi.org/10.1002/rcm.2855
  11. Resolution of infrared matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using glycerol; enhancement with a disperse laser beam vol.21, pp.8, 2007, https://doi.org/10.1002/rcm.2983
  12. Influence of basic residues on dissociation kinetics and dynamics of singly protonated peptides: time-resolved photodissociation study vol.44, pp.10, 2009, https://doi.org/10.1002/jms.1670
  13. Enhancement of matrix-assisted laser desorption/ionization photodissociation tandem time-of-flight mass spectra; spectral reduction and cleanup of isotopomeric contamination vol.19, pp.18, 2005, https://doi.org/10.1002/rcm.2083
  14. Characterization of Ionized Maltooligosaccharides by Sodium Cation in MALDI-TOFMS Depending on the Molecular Size vol.27, pp.8, 2005, https://doi.org/10.5012/bkcs.2006.27.8.1243
  15. Influence of Silver Salt Types on Formation of Silver Cluster Ions in MALDI with DHB as Matrix vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2508
  16. Photo-Induced Dissociation of Protonated Peptide Ions in a Quadrupole Ion Trap Time-of-Flight Mass Spectrometer vol.28, pp.4, 2005, https://doi.org/10.5012/bkcs.2007.28.4.619
  17. Direct Formation of Silver Cluster Ions from Silver Salts by Laser Desorption/Ionization vol.28, pp.8, 2005, https://doi.org/10.5012/bkcs.2007.28.8.1437
  18. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  19. Optimization of Reflectron for Kinetic and Mechanistic Studies with Multiplexed Multiple Tandem (MSn) Time-of-flight Mass Spectrometry vol.31, pp.1, 2010, https://doi.org/10.5012/bkcs.2010.31.01.092
  20. Dissociation mechanisms and implication for the presence of multiple conformations for peptide ions with arginine at the C-terminus: time-resolved photodissociation study vol.45, pp.7, 2005, https://doi.org/10.1002/jms.1773
  21. Matrix-Assisted Variable Wavelength Laser Desorption Ionization of Peptides; Influence of the Matrix Absorption Coefficient on Expansion Cooling vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2955
  22. Laser‐induced dissociation of singly protonated peptides at 193 and 266 nm within a hybrid linear ion trap mass spectrometer vol.27, pp.10, 2013, https://doi.org/10.1002/rcm.6545
  23. A High-Lateral Resolution MALDI Microprobe Imaging Mass Spectrometer Utilizing an Aspherical Singlet Lens vol.34, pp.1, 2005, https://doi.org/10.5012/bkcs.2013.34.1.207
  24. 193 nm Ultraviolet Photodissociation Mass Spectrometry of Tetrameric Protein Complexes Provides Insight into Quaternary and Secondary Protein Topology vol.138, pp.34, 2016, https://doi.org/10.1021/jacs.6b03905
  25. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules vol.120, pp.7, 2005, https://doi.org/10.1021/acs.chemrev.9b00440