References
- Schlapbach, L.; Züttel, A. Nature 2001, 414, 353 https://doi.org/10.1038/35104634
- Seayad, A. M.; Antonelli, D. M. Adv. Mater. 2004, 16, 765 https://doi.org/10.1002/adma.200306557
- Zuttel, A. Mater. Today 2003, 6, 24
- Nijkamp, M. G.; Raaymakers, J. E. M. J.; van Dillen, A. J.; de Jong, K. P. Appl. Phys. A 2001, 72, 619 https://doi.org/10.1007/s003390100847
- Weitkamp, J.; Fritz, M.; Ernst, S. Int. J. Hydrogen Energy 1995, 20, 967 https://doi.org/10.1016/0360-3199(95)00058-L
- Langmi, H. W.; Walton, A.; Al-Mamouri, M. M.; Johnson, S. R.; Book, D.; Speight, J. D.; Edwards, P. P.; Gameson, I.; Anderson, P. A.; Harris, I. R. J. Alloy Compd. 2003, 356, 710 https://doi.org/10.1016/S0925-8388(03)00368-2
- Kazansky, V. B.; Borovkov, V. Yu.; Serich, A.; Karge, H. G. Micropor. Mesopor. Mater. 1998, 22, 251 https://doi.org/10.1016/S1387-1811(98)00084-5
- Forster, P. M.; Eckert, J.; Chang, J.-S.; Park, S.-E.; Férey, G.; Cheetham, A. K., J. Am. Chem. Soc. 2003, 125, 1309 https://doi.org/10.1021/ja028341v
- Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem. Intl. Ed. 2004, 43, 2334 https://doi.org/10.1002/anie.200300610
- Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127 https://doi.org/10.1126/science.1083440
- Zhao, X.; Xiao, B.; Fletche, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, J. Science 2004, 306, 1012 https://doi.org/10.1126/science.1101982
- Lee, E. Y.; Suh, M. P. Angew. Chem. Intl. Ed. 2004, 43, 2798 https://doi.org/10.1002/anie.200353494
- Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem. Intl. Ed. 2004, 43, 5033 https://doi.org/10.1002/anie.200460712
- Ferey, G.; Latroche, M.; Serre, C.; Millange, F.; Loiseau, T.; Percherson-Guégan, A. Chem. Commun. 2003, 2976
- Pan, L.; Sander, M. B.; Huang, X.; Li, J.; Smith, M.; Bittner, E.; Bockrath, B.; Johnson, J. K. J. Am. Chem. Soc. 2004, 126, 1308 https://doi.org/10.1021/ja0392871
- Darkrim, F. L.; Malbrunot, P.; Tartaglia, G. P. Int. J. Hydrogen Energy 2002, 27, 193 https://doi.org/10.1016/S0360-3199(01)00103-3
- Dillon, A. C.; Heben, M. J. Appl. Phys. A 2001, 72, 133 https://doi.org/10.1007/s003390100788
- Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666 https://doi.org/10.1021/ja049408c
- Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146 https://doi.org/10.1021/ja00368a062
- Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Park, S.-E. J. Mater. Chem. 2004, 14, 280 https://doi.org/10.1039/b309142b
- Yoon, J. W.; Jhung, S. H.; Kim, Y. H.; Park, S.-E.; Chang, J.-S. Bull. Korean Chem. Soc. 2005, 26, 558 https://doi.org/10.5012/bkcs.2005.26.4.558
- Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Hwang, J.-S.; Park, S.-E.; Chang, J.-S. Micropor. Mesopor. Mater. 2005, 80, 147 https://doi.org/10.1016/j.micromeso.2004.11.013
- Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276 https://doi.org/10.1038/46248
- Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louër, D.; Ferey, G. J. Am. Chem. Soc. 2002, 124, 13519 https://doi.org/10.1021/ja0276974
- Guillou, N.; Livage, C.; Drillon, M.; Férey, G. Angew. Chem. Intl. Ed. 2003, 42, 5314 https://doi.org/10.1002/anie.200352520
- Ferey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surble, S.; Dutour, J.; Margiolaki, I. Angew. Chem. Intl. Ed. 2004, 43, 6296 https://doi.org/10.1002/anie.200460592
- Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. J. Am. Chem. Soc. 2004, 126, 32 https://doi.org/10.1021/ja038678c
- Thomas, J. M.; Thomas, W. J. Introduction to the Principles of Heterogeneous Catalysis; Academic Press: New York, 1967; p 102
- Makarova, M. A.; Zholobenko, V. L.; Al-Ghefaili, K. M.; Thompson, N. E.; Dewing, J.; Dwyer, J. J. Chem. Soc. Faraday Trans. 1994, 90, 1047 https://doi.org/10.1039/ft9949001047
- Jhung, S. H. et al., unpublished results
- Arean, C. O.; Manoilova, O. V.; Bonelli, B.; Delgado, M. R.; Palomino, G. T.; Garrone, E. Chem. Phys. Lett. 2003, 370, 631 https://doi.org/10.1016/S0009-2614(03)00172-6
Cited by
- Mn(II)-Based Porous Metal–Organic Framework Showing Metamagnetic Properties and High Hydrogen Adsorption at Low Pressure vol.51, pp.1, 2012, https://doi.org/10.1021/ic2021929
- Synthesis of Ni/Graphene Nanosheets via Electron Beam Irradiation and Their Enhanced Electrochemical Hydrogen Storage Properties vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10530
- Porous Cobalt(II)–Organic Frameworks with Corrugated Walls: Structurally Robust Gas-Sorption Materials vol.119, pp.1-2, 2007, https://doi.org/10.1002/ange.200601627
- Porous Cobalt(II)–Organic Frameworks with Corrugated Walls: Structurally Robust Gas-Sorption Materials vol.46, pp.1-2, 2007, https://doi.org/10.1002/anie.200601627
- The potential of organic polymer-based hydrogen storage materials vol.9, pp.15, 2007, https://doi.org/10.1039/b618053a
- Low-Temperature Adsorption/Storage of Hydrogen on FAU, MFI, and MOR Zeolites with Various Si/Al Ratios: Effect of Electrostatic Fields and Pore Structures vol.13, pp.22, 2007, https://doi.org/10.1002/chem.200700148
- Novel Phosphotungstate-titania Nanocomposites from Aqueous Media vol.28, pp.7, 2005, https://doi.org/10.5012/bkcs.2007.28.7.1097
- A biporous coordination framework with high H2 storage density vol.2008, pp.3, 2005, https://doi.org/10.1039/b712201b
- Hydrogen Storage in Mesoporous Metal Oxides with Catalyst and External Electric Field vol.114, pp.15, 2010, https://doi.org/10.1021/jp910506g
- Knobby surfaced, mesoporous, single-phase GIS-NaP1 zeolite microsphere synthesis and characterization for H2 gas adsorption vol.1, pp.7, 2005, https://doi.org/10.1039/c2ta01311h