DOI QR코드

DOI QR Code

Tris-(pentafluorophenyl)phosphine Gold(I) Complexes as New Highly Efficient Catalysts for the Oxycarbonylation of Homopropargyl Carbonates

  • Published : 2005.12.20

Abstract

Keywords

References

  1. Hashmi, A. S. K. Gold Bulletin 2004, 37, 51 https://doi.org/10.1007/BF03215517
  2. Hoffmann-Roeder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387 https://doi.org/10.1039/b416516k
  3. Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978 https://doi.org/10.1021/ja044602k
  4. Nieto-Oberhuber, C.; Munoz, M. P., Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402 https://doi.org/10.1002/anie.200353207
  5. Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 11806 https://doi.org/10.1021/ja046112y
  6. Shi, Z.; He, C. J. Am. Chem. Soc. 2004, 126, 5964 https://doi.org/10.1021/ja031953a
  7. Asao, N.; Sato, K.; Menggenbateer, Y.; Yamamoto, Y. J. Org. Chem. 2005, 70, 3682 https://doi.org/10.1021/jo0500434
  8. Shin, S.; Gupta, A. K.; Rhim, C. Y.; Oh, C. H. Chem. Cummun. 2005, 35, 4429
  9. Kim, N.; Kim, Y.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005, 7, 5289 https://doi.org/10.1021/ol052229v
  10. Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164 https://doi.org/10.1021/ja0466964
  11. Hashmi, A. S. K.; Schwarz, L.; Chio, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285 https://doi.org/10.1002/1521-3773(20000703)39:13<2285::AID-ANIE2285>3.0.CO;2-F
  12. Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349 https://doi.org/10.1021/ol0353159
  13. Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.; Kurpejovic, E. Angew. Chem. Int. 2004, 43, 6545 https://doi.org/10.1002/anie.200460232
  14. Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178 https://doi.org/10.1021/ja042257t
  15. Kang, J. E.; Lee, E. S.; Park, S. I.; Shin, S. Tetrahedron Lett. 2005, 46, 7431 https://doi.org/10.1016/j.tetlet.2005.08.084
  16. Mezailles, N.; Richard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133 https://doi.org/10.1021/ol0515917
  17. Gagosz, F. Org. Lett. 2005, 7, 4129 https://doi.org/10.1021/ol051397k
  18. Alfonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3097
  19. Trost, B. M.; Ball, Z. T.; Joege, T. Angew. Chem. Int. Ed. 2003, 42, 3415 https://doi.org/10.1002/anie.200351587
  20. Davies, H. M. L.; Beckwith, R. E.; Antoulinakis, E. G.; Jin, Q. J. Org. Chem. 2003, 68, 6126 https://doi.org/10.1021/jo034533c
  21. Bode, J. W.; Carreira, E. K. J. Org. Chem. 2001, 66, 6410 https://doi.org/10.1021/jo015791h
  22. Nelson, S. G.; Wan, Z. Org. Lett. 2000, 2, 1883 https://doi.org/10.1021/ol005968e
  23. Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2003, 126, 14
  24. Marshall, J. A.; Yanik, M. W. J. Org. Chem. 1999, 64, 3798 https://doi.org/10.1021/jo990439d

Cited by

  1. Gold(I)-Catalyzed Intramolecular Hydroamination of Alkyne with Trichloroacetimidates vol.8, pp.16, 2006, https://doi.org/10.1021/ol061307r
  2. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity vol.115, pp.17, 2015, https://doi.org/10.1021/cr500691k
  3. Total Synthesis of Gelsemoxonine through a Spirocyclopropane Isoxazolidine Ring Contraction vol.137, pp.18, 2015, https://doi.org/10.1021/jacs.5b02574
  4. Influence in Fluorinated Gold(I) Coordination Compounds vol.2018, pp.40, 2018, https://doi.org/10.1002/ejic.201800567
  5. New Phosphine Ligand Architectures Lead to Efficient Gold Catalysts for Cycloisomerization Reactions at Very Low Loading pp.16154150, 2018, https://doi.org/10.1002/adsc.201800938
  6. Gold-Katalyse vol.118, pp.47, 2006, https://doi.org/10.1002/ange.200602454
  7. Gold Catalysis vol.45, pp.47, 2006, https://doi.org/10.1002/anie.200602454
  8. Gold-Katalyse: Isolierung von Vinylgold-Komplexen ausgehend von Alkinen vol.121, pp.44, 2009, https://doi.org/10.1002/ange.200903134
  9. Gold Catalysis: Isolation of Vinylgold Complexes Derived from Alkynes vol.48, pp.44, 2009, https://doi.org/10.1002/anie.200903134
  10. tris-(Pentafluorophenyl)phosphine Gold(I) Complexes as New Highly Efficient Catalysts for the Oxycarbonylation of Homopropargyl Carbonates. vol.37, pp.14, 2005, https://doi.org/10.1002/chin.200614156
  11. Molecular diversity through gold catalysis with alkynes vol.2007, pp.4, 2007, https://doi.org/10.1039/b612008c
  12. Cyclization of Propargylic Amides: Mild Access to Oxazole Derivatives vol.16, pp.3, 2010, https://doi.org/10.1002/chem.200902472
  13. Gold(I)‐Catalyzed Addition of Diphenyl Phosphate to Alkynes: Isomerization of Kinetic Enol Phosphates to the Thermodynamically Favored Isomers vol.122, pp.38, 2005, https://doi.org/10.1002/ange.201001799
  14. Gold(I)‐Catalyzed Addition of Diphenyl Phosphate to Alkynes: Isomerization of Kinetic Enol Phosphates to the Thermodynamically Favored Isomers vol.49, pp.38, 2005, https://doi.org/10.1002/anie.201001799
  15. Gold(I)‐Catalyzed Access to Tetrahydropyran‐4‐ones from 4‐(Alkoxyalkyl)oxy‐1‐butynes: Formal Catalytic Petasis–Ferrier Rearrangement vol.17, pp.5, 2005, https://doi.org/10.1002/chem.201002918
  16. Palladium-Catalyzed Cross-Coupling Reaction and Gold-Catalyzed Cyclization for Preparation of Ethyl 2-Aryl 2,3-Alkadienoates and α-Aryl γ-Butenolides vol.32, pp.8, 2005, https://doi.org/10.5012/bkcs.2011.32.8.2911
  17. Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones vol.9, pp.None, 2013, https://doi.org/10.3762/bjoc.9.93
  18. Gold as a catalyst. Part III. Addition to double bonds vol.89, pp.4, 2005, https://doi.org/10.1070/rcr4901
  19. The core of the matter - arene substitution determines the coordination and catalytic behaviour of tris(1-phosphanyl-1′-ferrocenylene)arene gold(I) complexes vol.49, pp.46, 2005, https://doi.org/10.1039/d0dt02743j