DOI QR코드

DOI QR Code

A Photochromic Dye Activation Method for Measuring the Thickness of Liquid Films

  • Kim, Jeong-Bae (New & Renewable Energy Research Department, KIER) ;
  • Kim, Moo-Hwan (Department of Mechanical Engineering, Pohang University of Science and Technology)
  • Published : 2005.06.20

Abstract

To measure the thickness of liquid films from 10 to 60 ${\mu}m$, we used photochromic dye activation. And we used silicone oil with 10 centi-Stokes and commercial photochromic dyes. To make films with exact and known thicknesses, we used two glass wafers. A film formed between two wafers after placing a drop of liquid of known volume on one wafer and covering the other. The film thickness could be estimated from the diameter of wafer and the dropped liquid volume. To quantitatively evaluate the result, captured the images using digital camera then analyzed the images using the image tool. The gray scale intensity using the captured images of activated dye with these thicknesses showed the repeatability below ${\pm}$ 1.0% when measured with a silicone oil solution containing 0.1% SO and SO-ANTH dyes. And we showed that photochromic dye activation method could be used to measure our liquid film thickness ranges.

Keywords

References

  1. Jayanti, S.; Hewitt, G. F.; White, S. P. Int. J. of Multiphase Flow 1990, 16, 1097 https://doi.org/10.1016/0301-9322(90)90108-U
  2. Kang, H. C.; Kim, M. H. Int. J. of Multiphase Flow 1992, 18, 423 https://doi.org/10.1016/0301-9322(92)90026-D
  3. Fukano, T. Nuclear Engineering and Design 1998, 184, 363 https://doi.org/10.1016/S0029-5493(98)00209-X
  4. Klausner, J. F.; Zeng, L. Z.; Bernhard, D. M. Rev. Sci. Instrum. 1992, 63, 3147 https://doi.org/10.1063/1.1142568
  5. Thorncroft, G. E.; Klausner, J. F. J. of Fluids Engineering 1997, 119, 164 https://doi.org/10.1115/1.2819103
  6. McAdam, D. W.; Heuptmann, E. G. Applied Optics 1975, 14, 1764 https://doi.org/10.1364/AO.14.001764
  7. Salazar, R. P.; Marschall, E. Rev. Sci. Instrum. 1975, 46, 1539 https://doi.org/10.1063/1.1134099
  8. Hurlburt, E. T.; Newell, E. T. Experiments in Fluids 1996, 21, 357
  9. Evseev, A. R. Heat Transfer Research 1998, 29, 535 https://doi.org/10.1615/HeatTransRes.v29.i6-8.250
  10. Shedd, T. A.; Newell, T. A. Rev. Sci. Instrum. 1998, 69, 4205 https://doi.org/10.1063/1.1149232
  11. Zhang, J. T.; Wang, B. X.; Peng, Z. F. Rev. Sci. Instrum. 2000, 71, 1883 https://doi.org/10.1063/1.1150557
  12. Mouza, A. A.; Vlachos, N. A.; Paras, S. V.; Karabelas, A. J. Experiments in Fluids 2000, 28, 355 https://doi.org/10.1007/s003480050394
  13. Kamei, T.; Serizawa, A. Nuclear Engineering and Design 1998, 184, 349 https://doi.org/10.1016/S0029-5493(98)00208-8
  14. Smart, A. E.; Ford, R. A. T. Wear 1974, 29, 41 https://doi.org/10.1016/0043-1648(74)90132-X
  15. Driscoll, D. I.; Schmitt, R. L.; Stevenson, W. H. J. of Fluids Engineering 1992, 114, 107 https://doi.org/10.1115/1.2909984
  16. Johnson, M. F. G.; Schluter, R. A.; Bankoff, S. G. Rev. Sci. Instrum. 1997, 68, 4097 https://doi.org/10.1063/1.1148352
  17. Makarytchev, S. V.; Langrish, T. A. G.; Prince, R. G. H. Chem. Engineering Science 2000, 56, 77
  18. Fogwell, T. W.; Hope, C. B. Experimental Heat Transfer 1987, 1, 141 https://doi.org/10.1080/08916158708946337
  19. Kawaji, M.; DeJesus, J. M.; Tudose, G. Nuclear Engineering and Design 1997, 175, 37 https://doi.org/10.1016/S0029-5493(97)00160-X
  20. Kawaji, M. Nuclear Engineering and Design 1998, 184, 379 https://doi.org/10.1016/S0029-5493(98)00210-6
  21. Lorencez, C.; Nasr-Esfahany, M.; Kawaji, M.; Ojha, M. Int. J. Multiphase Flow 1997, 23, 205
  22. Kim, S. H.; Lee, S. N.; Lim, Y. J. J. of Korean Chem. Science 1993, 37, 523
  23. Lee, Y. S.; Kim, J. G.; Huh, Y. D.; Kim, M. K. J. of Korean Chem. Science 1994, 38, 864

Cited by

  1. Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy vol.52, pp.6, 2012, https://doi.org/10.1007/s00348-012-1279-3
  2. Liquid-Phase Photochromic Composition Based on Titanium and Silver Compounds vol.81, pp.2, 2014, https://doi.org/10.1007/s10812-014-9925-6
  3. Free radially expanding liquid sheet in air: time- and space-resolved measurement of the thickness field vol.764, pp.1469-7645, 2015, https://doi.org/10.1017/jfm.2014.714
  4. Drop impact on small surfaces: thickness and velocity profiles of the expanding sheet in the air vol.814, pp.1469-7645, 2017, https://doi.org/10.1017/jfm.2017.18
  5. Dynamics of Nanoscale Precursor Film near a Moving Contact Line of Spreading Drops vol.106, pp.25, 2005, https://doi.org/10.1103/physrevlett.106.254501