DOI QR코드

DOI QR Code

Preparation and Characterization of NiO/CeO2-ZrO2/WO3 Catalyst for Ethylene Dimerization: Effect of CeO2 Doping and WO3 Modifying on Catalytic Activity

  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Han, Jong-Soo (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Kim, Hae-Won (Department of Advanced Materials and Environment Engineering, Kyung Il University) ;
  • Pae, Young-Il (Department of Chemistry, University of Ulsan)
  • Published : 2005.05.20

Abstract

A series of catalysts, NiO/$CeO_2-ZrO_2/WO_3$, for ethylene dimerization was prepared by the precipitation and impregnation methods. For NiO/$CeO_2-ZrO_2/WO_3$ sample, no diffraction line of nickel oxide was observed up to 40 wt%, indicating good dispersion of nickel oxide on the surface of catalyst. The hexagonal and monoclinic phases of $WO_3$ up to the calcination temperature of 500 ${^{\circ}C}$ were observed, whereas the hexagonal phase of WO3 completely was transformed into monoclinic phase of $WO_3$ at 600 ${^{\circ}C}$ and above. The role of $CeO_2$ in the catalysts was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity. The catalytic activities for ethylene dimerization were correlated with the acidity of catalysts measured by the ammonia chemisorption method. 25-NiO/5-$CeO_2-ZrO_2/15-WO_3$ containing 25 wt% NiO, 15 wt% $WO_3$ and 5 mol% $CeO_2$, and calcined at 400 ${^{\circ}C}$ exhibited a maximum catalytic activity due to the effects of $WO_3$ modifying and $CeO_2$ doping.

Keywords

References

  1. Urabe, K.; Koga, M.; Izumi, Y. J. Chem. Soc., Chem. Commun. 1989, 807
  2. Bernardi, F.; Bottoni, A.; Rossi, I. J. Am. Chem. Soc. 1998, 120, 7770 https://doi.org/10.1021/ja980604r
  3. Sohn, J. R.; Ozaki, A. J. Catal. 1979, 59, 303 https://doi.org/10.1016/S0021-9517(79)80034-2
  4. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29 https://doi.org/10.1016/0021-9517(80)90336-X
  5. Wendt, G.; Fritsch, E.; Schollner, R.; Siegel, H. Z. Anorg. Allg. Chem. 1980, 467, 51 https://doi.org/10.1002/zaac.19804670107
  6. Sohn, J. R.; Shin, D. C. J. Catal. 1996, 160, 314 https://doi.org/10.1006/jcat.1996.0150
  7. Berndt, G. F.; Thomson, S. J.; Webb, G. J. J. Chem. Soc. Faraday Trans. 1 1983, 79, 195 https://doi.org/10.1039/f29837900195
  8. Herwijnen, T. V.; Doesburg, H. V.; Jong, D. V. J. Catal. 1973, 28, 391 https://doi.org/10.1016/0021-9517(73)90132-2
  9. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69 https://doi.org/10.1006/jcat.2002.3581
  10. Sohn, J. R.; Park, W. C. Bull. Korean Chem. Soc. 2000, 21, 1063
  11. Wendt, G.; Hentschel, D.; Finster, J.; Schollner, R. J. Chem. Soc. Faraday Trans. 1 1983, 79, 2013 https://doi.org/10.1039/f19837902013
  12. Kimura, K.; Ozaki, A. J. Catal. 1964, 3, 395 https://doi.org/10.1016/0021-9517(64)90142-3
  13. Maruya, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1973, 46, 351 https://doi.org/10.1246/bcsj.46.351
  14. Hartmann, M.; Poppl, A.; Kevan, L. J. Phys. Chem. 1996, 1009, 906
  15. Elev, I. V.; Shelimov, B. N.; Kazansky, V. B. J. Catal. 1984, 89, 470 https://doi.org/10.1016/0021-9517(84)90323-3
  16. Choo, H.; Kevan, L. J. Phys. Chem. B 2001, 105, 6353 https://doi.org/10.1021/jp0106909
  17. Sohn, J. R.; Kim, H. J. J. Catal. 1986, 101, 428 https://doi.org/10.1016/0021-9517(86)90270-8
  18. Sohn, J. R.; Lee, S. Y. Appl. Catal. A: Gen. 1997, 164, 127 https://doi.org/10.1016/S0926-860X(97)00163-4
  19. Sohn, J. R.; Kim, H. W.; Park, M. Y.; Park, E. H.; Kim, J. T.; Park, S. E. Appl. Catal. 1995, 128, 127 https://doi.org/10.1016/0926-860X(95)00057-7
  20. Comelli, R. A.; Vera, C. R.; Parera, J. M. J. Catal. 1995, 151, 96 https://doi.org/10.1006/jcat.1995.1012
  21. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, 1
  22. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases; Elsevier Science and Amsterdam: 1989; Chap. 4
  23. Arata, K. Adv. Catal. 1990, 165, 37
  24. Hino, M.; Kobayashi, S.; Arata, K. J. Am. Chem. Soc. 1979, 101, 6439 https://doi.org/10.1021/ja00515a051
  25. Cheung, T. K.; Gates, B. C. J. Catal. 1997, 168, 522 https://doi.org/10.1006/jcat.1997.1654
  26. Sohn, J. R.; Lee, S. H.; Park, W. C.; Kim, H. W. Bull. Korean Chem. Soc. 2004, 25, 657 https://doi.org/10.5012/bkcs.2004.25.5.657
  27. Sohn, J. R.; Seo, D. H.; Lee, S. H. J. Ind. Eng. Chem. 2004, 10, 309
  28. Sohn, J. R.; Lee, S. H. Appl. Catal. A: Gen. 2004, 266, 89 https://doi.org/10.1016/j.apcata.2004.01.034
  29. Sohn, J. R.; Chun, E. W.; Pae, Y. I. Bull. Korean Chem. Soc. 2003, 24, 1785 https://doi.org/10.5012/bkcs.2003.24.12.1785
  30. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170 https://doi.org/10.1006/jcat.1996.0076
  31. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2002, 11, 230
  32. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Science 1981, 211, 1121 https://doi.org/10.1126/science.211.4487.1121
  33. Wachs, I. E.; Chersich, E. C.; Hardenbergh, J. H. Appl. Catal. 1985, 13, 335 https://doi.org/10.1016/S0166-9834(00)81152-5
  34. Vuurman, M. A.; Wachs, I. E.; Hirt, A. M. J. Phys. Chem. 1991, 95, 9928 https://doi.org/10.1021/j100177a059
  35. Sohn, J. R.; Kim, J. G.; Kwon, T. D.; Park, E. H. Langmuir 2002, 18, 1666 https://doi.org/10.1021/la011304h
  36. Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126 https://doi.org/10.1021/la00025a029
  37. Mercera, P. D. L.; van Ommen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.; Ross, J. R. H. Appl. Catal. 1990, 57, 127 https://doi.org/10.1016/S0166-9834(00)80728-9
  38. Ebitani, K.; Konishi, J.; Hattori, H. J. Catal. 1991, 130, 257 https://doi.org/10.1016/0021-9517(91)90108-G
  39. Adeeva, V.; Lei, G. D.; Sachtler, W. M. H. Appl. Catal. 1994, 118, L11-L15 https://doi.org/10.1016/0926-860X(94)80084-7
  40. Lin, C. H.; Hsu, C. Y. J. Chem. Soc. Chem. Commun. 1992, 1479
  41. Sohn, J. R.; Lim, J. S.; Lee, S. H. Chem. Lett. 2004, 33, 1490 https://doi.org/10.1246/cl.2004.1490
  42. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69 https://doi.org/10.1006/jcat.2002.3581
  43. Sohn, J. R.; Kim, H. W. J. Mol. Catal. 1989, 52, 361 https://doi.org/10.1016/0304-5102(89)85045-X
  44. Basila, M. R.; Kantner, T. R. J. Phys. Chem. 1967, 71, 467 https://doi.org/10.1021/j100862a001
  45. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052 https://doi.org/10.1021/j100332a042
  46. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2003, 239, 269 https://doi.org/10.1016/S0926-860X(02)00392-7
  47. Sohn, J. R.; Park, M. Y. Langmuir 1998, 14, 6140 https://doi.org/10.1021/la980222z
  48. Kimura, K.; A-I H.; Ozaki, A. J. Catal. 1990, 18, 271 https://doi.org/10.1016/0021-9517(70)90322-2
  49. Loong, C.-K.; Ozawa, M. J. Alloys Compd. 2000, 60, 303
  50. Dong, W.-S.; Roh, H.-S.; Jun, K.-W.; Park, S.-E.; Oh, Y.-S. Appl. Catal. A: Gen. 2002, 226, 63 https://doi.org/10.1016/S0926-860X(01)00883-3
  51. Pae, Y. I.; Bae, M. H.; Park, W. C.; Sohn, J. R. Bull. Korean Chem. Soc. 2004, 25, 1881 https://doi.org/10.5012/bkcs.2004.25.12.1881
  52. Tanabe, K. Solid Acids and Bases; Kodansha: Tokyo, 1970; p 103

Cited by

  1. The Effects of Al2O3 Addition and WO3 Modification on Catalytic Activities of NiO/TiO2 for Acid Catalysis vol.120, pp.1-2, 2008, https://doi.org/10.1007/s10562-007-9262-y
  2. Effect of Dispersed MoO3 Amount on Catalytic Activity of NiO-ZrO2 Modified with MoO3 for Acid Catalysis vol.27, pp.10, 2005, https://doi.org/10.5012/bkcs.2006.27.10.1623
  3. CeO2-Promoted Highly Active Catalyst, NiSO4/CeO2-ZrO2 for Ethylene Dimerization vol.27, pp.12, 2005, https://doi.org/10.5012/bkcs.2006.27.12.1989
  4. NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis vol.27, pp.6, 2005, https://doi.org/10.5012/bkcs.2006.27.6.821
  5. Effect of Al2O3 Addition and WO3 Modification on Catalytic Activity of NiO/Al2O3-TiO2/WO3 for Ethylene Dimerization vol.28, pp.10, 2005, https://doi.org/10.5012/bkcs.2007.28.10.1763
  6. Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activities for Acid Catalysis vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2459