Two New Diarylheptanoids from Juglans mandshurica

Gao Li,[†] Jiong-Mo Cui,[†] Youngjoo Kwon,[‡] Chang-Seob Seo, Chong-Soon Lee,[§] Mi-Hee Woo,[#] Eung Seok Lee, Yurngdong Jahng, Hyeun-Wook Chang, Seung-Ho Lee,^{*} and Jong-Keun Son^{*}

[†]College of Pharmacy, Yanbian University, Yanji 133000, P.R. China [‡]College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Korea. ^{*}E-mail: jkson@yu.ac.kr [§]College of Science, Yeungnam University, Gyeongsan 712-749, Korea [#]College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Korea Received August 4, 2005

Key Words : Juglans mandshurica, Juglandaceae, Diarylheptanoid

The roots of *Juglans mandshurica* Maximowicz (Juglandaceae) have been used as a folk medicine for the treatment of cancer in Korea. Several naphthoquinones, naphthalenyl glucosides, tetralones, flavonoids, diarylheptanoid and galloyl glycosides have been isolated from *Juglans* species, ¹⁻¹⁷ and these compounds have been shown cytotoxic activity, topoisomerases I and II inhibitory activity, inhibitory effect on DNA polymerase and on the RNase H activity of HIV-1 reverse transcriptase.¹²⁻¹⁷ In the continuation of our studies on this plant, ¹⁰⁻¹⁷ we isolated two new diarylheptanoids (1 and 2) from the CHCl₃ fraction of the MeOH extract. This paper described the structural determination of two new diarylheptanoids (1 and 2) on the basis of spectroscopic studies, and the absolute configuration of 1 was elucidated by Mosher's ester method.

Two diarylheptanoids (1 and 2) were isolated from a CHCl₃ fraction of the roots of *J. mandshurica* by repetitive column chromatography and preparative HPLC using a RP-18 column.

Compound 1 had the molecular formula $C_{20}H_{26}O_5$ as determined from the HREIMS, ¹³C-NMR and DEPT spectral data. In the aromatic region of the ¹H-NMR spectrum, ²J coupling between H-5" and H-6" and ³J coupling between H-2" and H-6" indicated an 1,3,4-trisubstituted benzene ring, and ²J coupling between two sets of chemically equivalent protons (H-2'/H-6' and H-3'/H-5') suggested an 1,4-disubstituted aromatic ring. The ¹³C-NMR spectrum

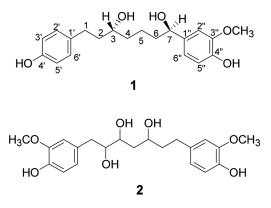


Figure 1. Diarylheptanoids isolated from the roots of *Juglans* mandshurica.

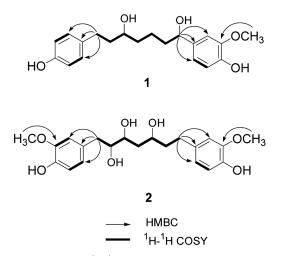


Figure 2. HMBC and ¹H-¹H COSY correlations of compounds 1 and 2.

exhibited a total of 20 carbon signals, including characteristic signals due to a methoxyl group (3"-OCH₃) and two chemically equivalent aromatic carbons (C-2'/C-6' and C-3'/ C-5'). In the aliphatic region of DEPT spectra, two hydroxymethine and five methylene signals were exhibited. The ¹H-¹H COSY spectrum showed connectivities among H-1, H-2, H-3, H-4, H-5, H-6 and H-7, between H-2' (H-6') and H-3' (H-5'), and between H-5"and H-6". In the HMBC spectrum, the connectivities of the two aromatic rings with the alkyl chain were indicated by the cross peaks between H-7 and C-

 Table 1. Characteristic ¹H-NMR data of Mosher esters of 1 for determination of stereochemistry

Position	$m{2}_S \ \delta_S$	$egin{array}{c} 2_R \ \delta_R \end{array}$	$\Delta \delta \ \delta_{S}$ - δ_{R}
2	1.83	1.92	-0.11
3	5.02	4.96	R
4	1.51	1.44	+0.07
5	1.91	1.82	+0.09
	1.74	1.68	+0.06
7	5.78	5.69	R
2"	6.98	7.03	-0.05
6"	6.81	6.84	-0.03

Notes

1", C-2" and C-6", and those between H-1 and C-1', C-2' and C-6'. The position of the methoxyl group of **1** was determined by both the HMBC correlation of C-3" with 3"-OCH₃, and the positive NOE effect (6.3%) between H-2" and 3"-OCH₃.^{17,18}

The absolute stereochemistry of the chiral center in 1 was determined using the Mosher's ester methodology based on the differences between the ¹H-NMR chemical shifts of (*S*)and (*R*)-MTPA ester derivatives. ¹H-NMR data were assigned based on the ¹H-¹H COSY spectra of 1_{*S*} and 1_{*R*} derivatives (Table 1). The negative value of $\Delta \delta_{\rm H} (\delta_{\rm S} - \delta_{\rm R})$ at H-2 and the positive value of $\Delta \delta_{\rm H} (\delta_{\rm S} - \delta_{\rm R})$ at H-4 suggested a *R* configuration at C-3, and the positive value of $\Delta \delta_{\rm H} (\delta_{\rm S} - \delta_{\rm R})$ at H-5 and the negative values of $\Delta \delta_{\rm H} (\delta_{\rm S} - \delta_{\rm R})$ at H-2" and H-6" suggested a *R* configuration at C-7. It was reported that, in a case of determination of the absolute configuration on alpha carbon from an aromatic group (C-7), chemical shift differences of protons $[\Delta \delta_{\rm H} (\delta_{\rm S} - \delta_{\rm R})]$ at beta position from the aromatic group (C-6) could not be used for due to inconsistency of them.¹⁹

Compound 2 had the molecular formula C₂₁H₂₈O₇ determined from the HREIMS, ¹³C-NMR and DEPT spectral data. The ¹H-NMR spectrum of 2 showed signals for two sets of 1,3,4-trisubstituted aromatic rings and two methoxyl groups. The ¹³C-NMR and DEPT spectra of 2 exhibited a total of 21 carbon signals, including three hydroxymethine groups, four methylene and twelve aromatic carbons. The ¹H-¹H COSY spectrum showed the connectivities among H-1, H-2, H-3, H-4, H-5, H-6 and H-7, between H-5' and H-6', and between H-5" and H-6". In the HMBC spectrum, the connectivities of the two aromatic rings with the alkyl chain were indicated by the cross peaks between H-7 and C-1", C-2" and C-6", and those between H-1 and C-1', C-2' and C-6'. The position of the two methoxyl groups on the two aromatic rings were determined by the HMBC correlation of C-3" with 3"-OCH₃, and that of C-3' with 3'-OCH₃. In the NOESY spectrum, NOE cross peaks between 3"-OCH₃ and H-2" and between 3'-OCH3 and H-2' were also observed. However, absolute configuration at chiral center of 2 could not be determined because of the shortage of material.

Compounds 1 and 2 showed neither cytotoxicity against HT-29 and MCF-7 cell lines (IC₅₀ of 1 and 2 were more than 100 μ M) nor inhibitory activity on both DNA topoisomerases I and II at a concentration of 100 μ M.¹⁶

Experimental Section

General Experimental Procedures. Optical rotations were measured using a JASCO DIP-1000 (Tokyo, Japan) automatic digital polarimeter, and FT-IR spectra were recorded on a JASCO FT-IR 300E spectrophotometer, and UV spectra using on a JASCO V-550 spectrophotometer. NMR spectra were recorded on a Bruker 250 MHz (DMX 250) spectrometer using Bruker's standard pulse program. Samples were dissolved in CD₃OD, and chemical shifts were reported in ppm downfield from TMS. The MS spectra were measured by a VG TRIO 2A mass spectrometer. For

preparative HPLC, and LC-10AD pump (Shimadzu), SPD-10A detector (Shimadzu) and Shim-Pack Prep-ODS (20 × 250 mm) column were used. Silica gel 60 (70-230 and 270-400 mesh, Merck), Lichroprep RP-18 gel (40-63 μ m, Merck), and TLC plate (Silica-gel 60 F₂₅₄ and RP-18 F₂₅₄) were purchased from EM Scientific. (*R*)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetyl [(*R*)-MTPA] chloride and (*S*)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetyl [(*S*)-MTPA] chloride were purchased from Sigma Chemicals Co. Ltd. (St. Louis, MO, USA). All other chemicals and solvents were analytical grade and used without further purification.

Plant Material. The roots of *J. mandshurica* were collected in September 1993 in a mountainous area of Pyongchang-goon, Gangwon-do, Korea, and dried at room temperature for 2 weeks. The material was confirmed taxonomically by Professor G. H. Bae, at Chungnam National University in Daejeon, Republic of Korea. A voucher specimen has been deposited at the College of Pharmacy, Yeungnam University.

Isolation. The roots of J. mandshurica (3 kg) were extracted with MeOH two times under reflux for 12 h yielding 300 g of a dark solid extract, 280 g of which was then suspended in H_2O and extracted with *n*-hexane. The resulting H₂O layer was extracted with CHCl₃, and the CHCl₃ solution was evaporated to dryness in vacuo. The CHCl₃ extract (50 g) was loaded on a silica gel column ($60 \times$ 9 cm, Silica gel 70-230 mesh) and the column was eluted with MeOH-EtOAc saturated with H₂O (gradient from EtOAc 100% to MeOH 100%). The eluent was combined on the basis of TLC, giving 17 fractions, F1-17. Fraction F8 (1.5 g) was chromatographed on a reverse phase column (60 \times 3.0 cm, LiChroprep RP-18) with MeOH-H₂O (gradient from 20% to 100% MeOH), which afforded 22 subfractions (F8-1-8-22). Subfraction F8-6 (160 mg) from the column was further purified on a reverse-phase column (60×2.0 cm, LiChroprep RP-18) with MeOH-H₂O (gradient from 20% to 100% MeOH), affording 1 and 2. Further purifications of 1 and 2 were carried out using HPLC with MeOH-H₂O gradients.

Compound 1: brown solid (12 mg), $[\alpha]_D^{25}$ –42.19° (c = 0.168, MeOH); UV (MeOH) λ_{max} (log ε) 224.8 (4.04), 278.6 (3.50); IR (KBr) ν_{max} 3422, 2931, 1718, 1515, 1457, 1375, 1267, 1075, 1036, 821 cm⁻¹; ¹H-NMR (CD₃OD, 250 MHz) $\delta 6.87$ (2H, d, J = 8.4 Hz, H-2'/H-6'), 6.83 (1H, d, J = 1.6 Hz, H-2"), 6.68 (1H, dd, J = 8.1, 1.6 Hz, H-6"), 6.62 (1H, d, J = 8.1 Hz, H-5"), 6.55 (2H, d, J = 8.4 Hz, H-3'/H-5'), 4.15 (1H, m, H-7), 3.73 (3H, s, 3'-OCH₃), 3.31 (1H, m, H-3), 2.51 (2H, m, H-1), 1.75-1.16 (8H, m, H-5a, -2, -6a, -5b, -4a, -6b, -4b); ¹³C-NMR (CD₃OD, 62.9 MHz) δ 156.3 (C-4'), 148.7 (C-3"), 146.8 (C-4"), 136.3 (C-1"), 134.3 (C-1'), 130.3 (C-2'/C-6'), 119.9 (C-6"), 116.0 (C-3'/C-5'), 115.7 (C-5"), 110.0 (C-2"), 81.2 (C-7), 78.3 (C-3), 56.3 (3"-OCH₃), 39.6 (C-2), 34.3 (C-6), 32.4 (C-4), 31.8 (C-1), 25.1 (C-5); HREIMS m/z 328.1685 ([M – H₂O]⁺, calcd. for C₂₀H₂₄O₄, 328.1675).

Compound 2: brown solid (6 mg), $[\alpha]_D^{25} + 15.91^\circ$ (c = 0.19, MeOH); UV (MeOH) λ_{max} (log ε) 280.6 (3.76); IR (KBr) v_{max} 3385, 2928, 1602, 1509, 1457, 1381, 1273, 1124,

1032, 820 cm⁻¹; ¹H-NMR (CD₃OD, 250 MHz) δ 6.72 (1H, d, J = 1.7 Hz, H-2'), 6.66 (1H, d, J = 1.7 Hz, H-2"), 6.64 (1H, d, J = 7.8 Hz, H-5'), 6.57 (1H, d, J = 8.0 Hz, H-5"), 6.56 (1H, dd, J = 1.7, 7.8 Hz, H-6'), 6.48 (1H, dd, J = 1.7, 8.0 Hz, H-6"), 4.01 (1H, m, H-5), 3.70 (3H, s, 3'-OCH₃), 3.69 (3H, s, 3"-OCH₃), 3.66 (3H, m, H-5, -3, -2), 2.72-2.42 (4H, m, H-1, -7), 1.61 (4H, m, H-4, -6); ¹³C-NMR (CD₃OD, 62.9 MHz) ä 148.7 (C-3'/C-3"), 145.7 (C-4'), 145.4 (C-4"), 135.2 (C-1'), 132.0 (C-1"), 128.8 (C-6'), 121.7 (C-6"), 116.1 (C-5"), 115.9 (C-5), 51.3 (3'-OCH₃/3"-OCH₃), 40.9 (C-4), 40.8 (C-6), 40.0 (C-1), 32.3 (C-7); HREIMS *m/z* 392.1829 ([M]⁺, calcd. for C₂₁H₂₈O₇, 392.1835).

Preparation of Mosher's Esters. To each 1 mg of **1** in 0.5 mL of CH₂Cl₂ were added sequentially 0.2 mL of pyridine, 0.5 mg of 4-(dimethylamino)pyridine, and 12.5 mg of (*R*)-(–)- α -methoxy- α -(trifluoromethyl) phenylacetyl [(*R*)-MTPA] chloride, separately.^{20,21} The mixture was left at room temperature overnight and purified over a microcolumn (0.6 × 6 cm) of silica gel (230-400 mesh) eluted with 3-4 mL of *n*-hexane-CH₂Cl₂ (1 : 3). The elute was dried, CH₂Cl₂ (5 mL) was added, and the CH₂Cl₂ was washed using 1% NaHCO₃ (5 mL × 2) and H₂O (5 mL × 2). The washed elute was dried *in vacuo* to give the *S*-Mosher's ester (**1**_{*S*}) of **1**. Using (*S*)-MTPA chloride afforded the *R*-Mosher's ester (**1**_{*R*}) of **1**. Their ¹H-NMR chemical shifts are given in Table 1.

Acknowledgments. This work was supported by Korea Research Foundation Grant (KRF-2004-005-E00004).

References

 Binder, R. G.; Benson, M. E.; Flash, R. A. *Phytochemistry* 1989, 28, 2799-2801.

- Gupta, S. R.; Ravindranath, B.; Seshadri, T. R. *Phytochemistry* 1972, 11, 2634-2636.
- 3. Muller, W. U.; Leistner, E. Phytochemistry 1978, 17, 1739-1742.
- Hirakawa, K.; Ogiue, E.; Motoyoshiya, J.; Yajima, M. Phytochemistry 1986, 25, 1494-1495.
- 5. Talpatra, S. K.; Karmacharta, B.; De, S. C.; Talapatra, B. *Phytochemistry* **1988**, *27*, 3929-3932.
- Pardhasaradhi, M.; Hari, B. M. Phytochemistry 1978, 17, 2042-2043.
- 7. Hedin, P. A.; Collum, D. H.; Langhans, V. E.; Grave, C. H. J. Agric. Food Chem. 1980, 28, 340-342.
- 8. Son, J. K. Arch. Pharm. Res. 1995, 18, 203-205.
- 9. Joe, Y. K.; Son, J. K.; Park, S. H.; Lee, I. J.; Moon, D. C. J. Nat. Prod. **1996**, *59*, 159-160.
- 10. Lee, S. W.; Lee, K. S.; Son, J. K. Planta Med. 2000, 66, 184-186.
- Li, G.; Xu, M. L.; Choi, H. G.; Lee, S. H.; Jahng, Y. D.; Lee, C. S.; Moon, D. C.; Woo, M. H.; Son, J. K. *Chem. Pharm. Bull.* 2003, 51, 262-264.
- Kim, S. H.; Lee, K. S.; Son, J. K.; Je, G. H.; Lee, J. S.; Lee, C. H.; Cheong, C. J. J. Nat. Prod. 1998, 61, 643-645.
- Lee, K. S.; Li, G.; Lee, C. S.; Woo, M. H.; Lee, S. H.; Jahng, Y. D.; Son, J. K. J. Nat. Prod. 2002, 65, 1707-1708.
- Min, B. S.; Lee, H. K.; Lee, S. M.; Kim, Y. H.; Bae, K. H.; Otake, T.; Nakamura, N.; Hattori, M. Arch. Pharm. Res. 2002, 25, 441-445.
- Min, B. S.; Nakamura, N.; Miyashiro, H.; Kim, Y. H.; Hattoro, M. Chem. Pharm. Bull. 2000, 48, 194-200.
- Li, G.; Lee, S. Y.; Lee, K. S.; Lee, S. W.; Kim, S. H.; Lee, S. H.; Lee, C. S.; Woo, M. H.; Son, J. K. Arch. Pharm. Res. 2003, 26, 466-470.
- Li, G.; Seo, C. S.; Lee, S. H.; Jahng, Y.; Chang, H. W.; Lee, C. S.; Woo, M. H.; Son, J. K. *Bull. Korean Chem. Soc.* **2004**, *25*, 397-399.
- Jeon, Y. W.; Jung, J. W.; Kang, M.; Chung, I. K.; Lee, W. Bull. Korean Chem. Soc. 2002, 23, 391-394.
- Ohtani, I. I.; Hotta, K.; Ichikawa, Y.; Isobe, M. Chem. Lett. 1995, 24, 513-514.
- 20. Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 95, 512-519.
- Rieser, M. J.; Hui, Y. H.; Rupprecht, J. K.; Kozlowski, J. F.; Wood, K. V.; McLaughlin, J. L.; Hanson, P. R.; Zhuang, A.; Hoye, T. R. J. Am. Chem. Soc. 1992, 144, 10203-10213.