DOI QR코드

DOI QR Code

Potential Energy Curves and Geometrical Structure Variations for [MX4]2- : M=Ni(II), Pd(II), Pt(II); X=Cl-, Br-) Dissociating into ([MX3]- + X-) : Ab Initio Study

  • Park, Jong-Keun (Department of Chemistry Education and Research Institute of Basic Science, Gyeongsang National University) ;
  • Kim, Bong-Gon (Department of Chemistry Education and Research Institute of Basic Science, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemistry Education and Research Institute of Basic Science, Gyeongsang National University)
  • Published : 2005.11.20

Abstract

Potential energy curves and internuclear (M-X) distance variations for dissociation reactions of $[MX_4]^{2-}$ into ($[MX_3]^-$ + $X^-$) have been calculated using ab initio Hartree-Fock (HF), second order M$\ddot{o}$ller-Plesset perturbation (MP2), and Density Functional Theory (DFT) methods with a triple zeta plus polarization (TZP) basis set. The equilibrium geometrical structures of $[MX_4]^{2-}$ are optimized to tetrahedral geometry for $[NiX_4]^{2-}$ and square planar geometry for ($[PdX_4]^{2-}$ and $[PtX_4]^{2-}$). The bond (M-X) distances of $[NiCl_4]^{2-}$, $[NiBr_4]^{2-}$, $[PdCl_4]^{2-}$, $[PdBr_4]^{2-}$, $[PtCl_4]^{2-}$, and $[PtBr_4]^{2-}$ at the DFT level are 2.258, 2.332, 2.351, 2.476, 2.367, and 2.493 $\AA$, respectively. The dissociation energies for the bond dissociation of ($[MX_3]^-$${\cdot}{\cdot}{\cdot}$$X^-$) at the DFT level are found to be 4.73 eV for $[NiCl_4]^{2-}$, 4.89 eV for $[NiBr_4]^{2-}$, 4.93 eV for $[PdCl_4]^{2-}$, 5.57 eV for $[PdBr_4]^{2-}$, 5.44 eV for $[PtCl_4]^{2-}$, and 5.87 eV for $[PtBr_4]^{2-}$. As the (M${\cdot}{\cdot}{\cdot}$X) distance of ($[MX_3]^-$${\cdot}{\cdot}{\cdot}$$X^-$) increases, the distance variation (Rt) of trans (M-X) bond at the trans-position is shorter than those (Rc) of two cis (M-X) bonds at the cisposition. Simultaneously the atomic charge variation of trans-X atom is more positive than those of equilibrium $[MX_4]^{2-}$ structures, while the variation of leaving X group is more positive.

Keywords

References

  1. Tondello, E.; Di Sipio, L.; De Michelis, G.; Oleari, L. Inorg. Chim. Acta 1971, 5, 305 https://doi.org/10.1016/S0020-1693(00)95934-6
  2. Messmer, R. P.; Interrante, L. V.; Johnson, K. H. J. Am. Chem. Soc. 1974, 96, 3847 https://doi.org/10.1021/ja00819a024
  3. Pelikan, P.; Liska, M. Coll. Czech. Chem. Commun. 1982, 47, 1556 https://doi.org/10.1135/cccc19821556
  4. Boea, R. Int. J. Quant. Chem. 1987, 31, 941 https://doi.org/10.1002/qua.560310608
  5. Bickelhaupt, M.; Ziegler, T.; Schleyer, P. von R. Organomet. 1995, 14, 2288 https://doi.org/10.1021/om00005a030
  6. Waizumi, K.; Masuda, H.; Einaga, H.; Fukushima, N. Bull. Chem. Soc. Jpn. 1993, 66, 3648 https://doi.org/10.1246/bcsj.66.3648
  7. Kang, D. M.; Kim, S. G.; Lee, S. J.; Park, J. K.; Park, K. M.; Shin, S. C. Bull. Korean Chem. Soc. 2005, 26, 1390 https://doi.org/10.5012/bkcs.2005.26.9.1390
  8. Gilardoni, F.; Weber, J.; Bellafrouh, K.; Daul, C.; Gudel, H.-U. J. Chem. Phys. 1996, 104, 7624 https://doi.org/10.1063/1.471488
  9. Liao, M.-S.; Zhang, Q.-er. Inorg. Chem. 1997, 36, 396 https://doi.org/10.1021/ic960369i
  10. Harvey, P. D.; Reber, C. Can. J. Chem. 1999, 77, 16 https://doi.org/10.1139/cjc-77-1-16
  11. Park, J. K.; Cho, Y. G.; Lee, S. S.; Kim, B. G. Bull. Korean Chem. Soc. 2004, 20, 85
  12. Deeth, R. J.; Elding, L. I. Inorg. Chem. 1996, 35, 5019 https://doi.org/10.1021/ic950335v
  13. Bray, M. R.; Deeth, R. J.; Paget, V. J.; Sheen, P. D. Int. J. Quant. Chem. 1996, 61, 85
  14. Deeth, R. J. Chem. Phys. Lett. 1996, 261, 45 https://doi.org/10.1016/0009-2614(96)00875-5
  15. Burda, J. V.; Runeberg, N.; Pyykko, P. Chem. Phys. Lett. 1998, 288, 635 https://doi.org/10.1016/S0009-2614(98)00292-9
  16. Burda, J. V.; Zeizinger, M.; Sponer, J.; Leszczynski, J. J. Chem. Phys. 2000, 113, 2224 https://doi.org/10.1063/1.482036
  17. Zeizinger, M.; Burda, J. V.; Soner, J.; Kapsa, V.; Leszczynski, J. J. Phys. Chem. A 2001, 105, 8086 https://doi.org/10.1021/jp010636s
  18. Lienke, A.; Klatt, G.; Robinson, D. J.; Koch, K. R.; Naidoo, K. J. Inorg. Chem. 2001, 40, 2352 https://doi.org/10.1021/ic0005745
  19. Ayala, R.; Marcos, E. S.; Daz-Moreno, S.; Sole, V. A.; Muooz Paez, A. J. Phys. Chem. B 2001, 105, 7588 https://doi.org/10.1021/jp010326+
  20. Burda, J. V.; Zeizinger, M.; Leszczynski, J. J. Chem. Phys. 2004, 120, 1253 https://doi.org/10.1063/1.1633757
  21. Hay, P. J. J. Am. Chem. Soc. 1981, 103, 1390 https://doi.org/10.1021/ja00396a017
  22. Noell, J. O.; Hay, P. J. Inorg. Chem. 1982, 21, 14 https://doi.org/10.1021/ic00131a004
  23. Ponec, R.; Rericha, R. J. Organomet. Chem. 1988, 431, 549
  24. Albanese, A.; Staley, D. L.; Rheingold, A. L.; Burmeister, J. L. Acta Cryst. 1989, C45, 1128
  25. Bridgeman, A. J.; Gerloch, M. Mol. Phys. 1993, 79, 1195 https://doi.org/10.1080/00268979300101931
  26. Allen, F. H.; Kennard, O. Chem. Des. Autom. News 8, 1993, 1, 31
  27. Bell, J. P.; Hall, D.; Waters, T. N. Acta Cryst. 1960, 21, 440 https://doi.org/10.1107/S0365110X66003116
  28. Mais, R. H. B.; Owston, P. G.; Wood, A. M. Acta Cryst. 1972, B28, 393
  29. Kroening, R. F.; Rush, R. M.; Martin Jr., D. S.; Clardy, J. C. Inorg. Chem. 1974, 13, 1366 https://doi.org/10.1021/ic50136a024
  30. Martin Jr., D. S.; Bonte, J. L.; Rush, R. M.; Jacobson, R. A. Acta Cryst. 1975, B31, 2538
  31. Ohba, S.; Sato, S.; Saito, Y. Acta Cryst. 1983, B39, 49
  32. Ohba, S.; Saito, Y. Acta Cryst. 1984, C40, 1639
  33. Templeton, D. H.; Templeton, L. K. Acta Crystallogr. 1985, A41, 365
  34. Takazawa, H.; Ohba, S.; Saito, Y. Acta Cryst. 1988, B44, 580
  35. Caminiti, R.; Sadun, C.; Basanisi, M.; Carbone, M. J. Mol. Liquid 1996, 70, 55 https://doi.org/10.1016/0167-7322(96)00950-6
  36. Caminiti, R.; Carbone, M.; Sadun, C. J. Mol. Liquid 1998, 75, 149 https://doi.org/10.1016/S0167-7322(98)82003-5
  37. Bengtsson, L. A.; Oskarsson, A. Acta Chem. Scand. 1992, 46, 707 https://doi.org/10.3891/acta.chem.scand.46-0707
  38. Valle, G.; Ettorre, R. Acta Crystallogr. 1994, C50, 1221
  39. Hiraishi, J.; Shimanouchi, T. Spectrochim. Acta 1966, 22, 1483 https://doi.org/10.1016/0371-1951(66)80142-X
  40. Perry, C. J.; Athans, D. P.; Young, E. F.; Durig, J. R.; Mitchell, B. R. Spectrochim. Acta Part 1967, A23, 1137
  41. Hiraishi, J.; Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta Part 1968, A24, 819
  42. Goggin, P. L.; Mink, J. J. Chem. Soc. Dalton Trans. 1974, 1479
  43. Degen, I. A.; Rowlands, A. J. Spectrochim. Acta Part 1991, A47, 1263
  44. Chen, Y.; Christensen, D. H.; Nielsen, O. F.; Hyldtoft, J.; Jacobsen, C. J. H. Spectrochim. Acta 1995, A51, 595
  45. Omrani, H.; Cavagnat, R.; Sourisseau, C. Spectrochim. Acta 2000, A56, 1645
  46. Parker, S. F.; Herman, H.; Zimmerman, A.; Williams, K. P. J. Chem. Phys. 2000, 261, 261 https://doi.org/10.1016/S0301-0104(00)00226-3
  47. Frish, M. J.; Trucks, G. W.; Head-Gordon, M. H.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 03; Gaussina Inc.: Pittsburgh, PA, 2003
  48. Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866 https://doi.org/10.1063/1.452288
  49. Andrae, D.; Hausserman, U.; Dolg, M.; Stoll, U. H.; Preuss, H. Theo. Chim. Acta 1990, 77, 123 https://doi.org/10.1007/BF01114537
  50. Basch, H.; Topiol, S. J. Chem. Phys. 1979, 71, 802 https://doi.org/10.1063/1.438370
  51. Andzelm, J.; Wimmer, E. J. Chem. Phys. 1992, 96, 1280 https://doi.org/10.1063/1.462165
  52. Andzelm, J.; Wimmer, E.; Salahub, D. R.; The Challenge of dand f-Electrons: Theory and Computation; Salahub, D. R.; Zerner, M. C., Eds.; ACS Symposium Series, No. 394
  53. American Chemical Society: Washington D. C. 1989; p 228 and references therein
  54. Andzelm, J. Density Functional Methods in Chemistry; Labanowski, J.; Andzelm, J., Eds.; Springer-Verlag: New York, 1991; p 155 and references therein
  55. Becke, A. D. The Challenge of d- and f-Electrons: Theory and Computation; Salahub, D. R.; Zerner, M. C. ACS Symposium Series, No. 394
  56. American Chemical Society: Washington, D.C. 1989; p 166
  57. Becke, A. D. Phys. Rev. 1988, A38, 3098
  58. Perdew, J. P. Phys. Rev. 1986, B33, 8822

Cited by

  1. ) coordination cages vol.45, pp.23, 2016, https://doi.org/10.1039/C6DT01278G
  2. Characteristics of the Intermediates in the Cyclization Reactions of Heterocycle-fused[1,4]oxazine Derivatives: Stepwise versus Concerted vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2219
  3. Characteristic Effects of 4,5-Disubstituted Pyridazin-3-one Derivatives with Various Functional Groups: Ab initio Study vol.28, pp.8, 2005, https://doi.org/10.5012/bkcs.2007.28.8.1363
  4. X-ray Crystal Structure and Luminescence Properties of Pd(II) and Pt(II) Complexes with Dithiopyrrole vol.29, pp.3, 2005, https://doi.org/10.5012/bkcs.2008.29.3.599
  5. Geometrical Characteristics and Reactivities of Tetracoordinated Pd Complexes: Mono- and Bidentate Ligands and Charged and Uncharged Ligands vol.29, pp.3, 2005, https://doi.org/10.5012/bkcs.2008.29.3.627
  6. Novel approach to accurately predict bond strength and ligand lability in platinum-based anticancer drugs vol.49, pp.36, 2005, https://doi.org/10.1039/d0dt02552f
  7. Asynchronous Double Schiff Base Formation of Pyrazole Porous Polymers for Selective Pd Recovery vol.8, pp.8, 2005, https://doi.org/10.1002/advs.202001676