DOI QR코드

DOI QR Code

Prediction of Chiral Discrimination by β-Cyclodextrins Using Grid-based Monte Carlo Docking Simulations

  • Choi, Young-Jin (Department of Microbial Engineering, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Dong-Wook (Electronics and Telecommunications Research Institute) ;
  • Park, Hyung-Woo (Korea Institute of Science and Technology Information) ;
  • Hwang, Sun-Tae (Department of Computer Science, Kookmin University) ;
  • Jeong, Karp-Joo (College of Information and Communication, Konkuk University) ;
  • Jung, Seun-Ho (Department of Microbial Engineering, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2005.05.20

Abstract

An efficiency of Monte Carlo (MC) docking simulations was examined for the prediction of chiral discrimination by cyclodextrins. Docking simulations were performed with various computational parameters for the chiral discrimination of a series of 17 enantiomers by $\beta$-cyclodextrin ($\beta$-CD) or by 6-amino-6-deoxy-$\beta$-cyclodextrin (am-$\beta$-CD). A total of 30 sets of enantiomeric complexes were tested to find the optimal simulation parameters for accurate predictions. Rigid-body MC docking simulations gave more accurate predictions than flexible docking simulations. The accuracy was also affected by both the simulation temperature and the kind of force field. The prediction rate of chiral preference was improved by as much as 76.7% when rigid-body MC docking simulations were performed at low-temperatures (100 K) with a sugar22 parameter set in the CHARMM force field. Our approach for MC docking simulations suggested that the conformational rigidity of both the host and guest molecule, due to either the low-temperature or rigid-body docking condition, contributed greatly to the prediction of chiral discrimination.

Keywords

References

  1. Cabusas, M. E. Ph. D. Thesis; Virginia Polytechnic Institute and State University: USA, 1998; pp 1-
  2. Pirkle, W. H.; Pochapsky, T. C. Chem. Rev. 1989, 89, 347 https://doi.org/10.1021/cr00092a006
  3. Lee, S.; Yi, D. H.; Jung, S. Bull. Korean Chem. Soc. 2004, 25, 216 https://doi.org/10.5012/bkcs.2004.25.2.216
  4. Lipkowitz, K. B.; Coner, R.; Peterson, M. A. J. Am. Chem. Soc. 1997, 119, 11269 https://doi.org/10.1021/ja972327e
  5. Dodziuk, H.; Lukin, O. Chem. Phys. Lett. 2000, 327, 18 https://doi.org/10.1016/S0009-2614(00)00831-9
  6. Wolbach, J. P.; Lloyd, D. K.; Wainer, I. W. J. Chromatogr. A 2001, 914, 299 https://doi.org/10.1016/S0021-9673(01)00580-5
  7. Booth, T. D.; Azzaoui, K.; Wainer, I. W. Anal. Chem. 1997, 69, 3879 https://doi.org/10.1021/ac9702150
  8. Natrajan, A.; Crowley, M.; Wilkins, N.; Humphrey, M. A.; Fox, A. D.; Grimshaw, A. S.; Brooks, C. L. III High Perform. Distribu. Compu. 2001, 10, 1
  9. Ferguson, D. M.; Raber, D. J. J. Am. Chem. Soc. 1989, 111, 4371 https://doi.org/10.1021/ja00194a034
  10. Choi, Y. H.; Yang, C. H.; Kim, H. W.; Jung, S. Carbohydr. Res. 2000, 328, 393 https://doi.org/10.1016/S0008-6215(00)00101-4
  11. Lee, J.; Jang, S.; Pak, Y.; Shin, S. Bull. Korean Chem. Soc. 2003, 24, 785 https://doi.org/10.5012/bkcs.2003.24.6.785
  12. Bouzida, D.; Rejto, P. A.; Verkhivker, G. M. Int. J. Quant. Chem. 1999, 73, 113 https://doi.org/10.1002/(SICI)1097-461X(1999)73:2<113::AID-QUA6>3.0.CO;2-9
  13. Rekharsky, M. V.; Inoue, Y. J. Am. Chem. Soc. 2002, 124, 813 https://doi.org/10.1021/ja010889z
  14. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187 https://doi.org/10.1002/jcc.540040211
  15. Wang, W.; Lim, W. A.; Jakalian, A.; Wang, J.; Wang, J.; Luo, R.; Bayly, C. I.; Kollman, P. A. J. Am. Chem. Soc. 2001, 123, 3986 https://doi.org/10.1021/ja003164o
  16. Bea, I.; Jaime, C.; Kollman, P. A. Theor. Chem. Acc. 2002, 108, 286 https://doi.org/10.1007/s00214-002-0384-4
  17. Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Proteins 2002, 47, 409 https://doi.org/10.1002/prot.10115
  18. Ahn, S.; Ramirez, J.; Grigorean, G.; Lebrilla, C. B. J. Am. Soc. Mass Spec. 2001, 12, 278 https://doi.org/10.1016/S1044-0305(00)00220-8
  19. Kano, K. J. Phys. Org. Chem. 1997, 10, 286 https://doi.org/10.1002/(SICI)1099-1395(199705)10:5<286::AID-POC915>3.0.CO;2-Y
  20. Fletcher, R.; Reeves, C. M. Compu. J. 1964, 7, 149 https://doi.org/10.1093/comjnl/7.2.149
  21. Mbamala, E. C.; Pastore, G. Phys. A 2002, 313, 312 https://doi.org/10.1016/S0378-4371(02)00975-5
  22. Bouzida, D.; Kumar, S.; Swendsen, R. H. Phys. Rev. A 1992, 45, 8894 https://doi.org/10.1103/PhysRevA.45.8894
  23. Allen, M. P.; Tildesley, D. J. Computer Simulations of Liquids; Oxford University Press: New York, 1987
  24. Jung, E.; Jeong, K.; Lee, S.; Kim, J.; Jung, S. Bull. Korean Chem. Soc. 2003, 24, 1627 https://doi.org/10.5012/bkcs.2003.24.11.1627
  25. Kim, H.; Jeong, K.; Lee, S.; Jung, S. Bull. Korean Chem. Soc. 2003, 24, 95 https://doi.org/10.5012/bkcs.2003.24.1.095
  26. Kuttel, M.; Brady, J. W.; Naidoo, K. J. J. Comput. Chem. 2002, 23, 1236 https://doi.org/10.1002/jcc.10119
  27. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J. Chem. Phys. 1953, 21, 1087 https://doi.org/10.1063/1.1699114
  28. Caflisch, A.; Fischer, S.; Karplus, M. J. Comput. Chem. 1997, 18, 723 https://doi.org/10.1002/(SICI)1096-987X(19970430)18:6<723::AID-JCC1>3.0.CO;2-U
  29. Srinivasan, J.; Cheatham, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A. J. Am. Chem. Soc. 1998, 120, 9401 https://doi.org/10.1021/ja981844+
  30. Sitkoff, D.; Sharp, K. A.; Honig, B. J. Phys. Chem. 1994, 98, 1978 https://doi.org/10.1021/j100058a043
  31. Kirschner, K. N.; Woods, R. J. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 10541 https://doi.org/10.1073/pnas.191362798
  32. Huo, S.; Massova, I.; Kollman, P. A. J. Comput. Chem. 2002, 23, 15 https://doi.org/10.1002/jcc.1153
  33. Choi, Y.; Jung, S. Carbohydr. Res. 2004, 339, 1961 https://doi.org/10.1016/j.carres.2004.05.026
  34. Jeong, K.; Kim, D.; Kim, M.; Hwang, S.; Jung, S.; Lim, Y.; Lee, S. Lecture Notes in Computer Science 2003, 2660, 1117 https://doi.org/10.1007/3-540-44864-0_116

Cited by

  1. Chiral Separation of Ketoprofen on a Chirobiotic T Column and Its Chiral Recognition Mechanisms vol.75, pp.23-24, 2012, https://doi.org/10.1007/s10337-012-2352-z
  2. Taste for Chiral Guests: Investigating the Stereoselective Binding of Peptides to β-Cyclodextrins vol.117, pp.11, 2013, https://doi.org/10.1021/jp311671w
  3. Molecular Dynamics Simulations on the Coplanarity of Quercetin Backbone for the Antioxidant Activity of Quercetin-3-monoglycoside vol.27, pp.2, 2005, https://doi.org/10.5012/bkcs.2006.27.2.325
  4. Monte Carlo Docking Study for the Role of Glycosidic Residues in Determining the Human 2G12 Antibody-Binding Specificity with Series of Manno-Disaccharides vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1811
  5. Molecular docking study for the prediction of enantiodifferentiation of chiral styrene oxides by octakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-γ-cyclodextrin vol.28, pp.6, 2005, https://doi.org/10.1016/j.jmgm.2009.11.005