DOI QR코드

DOI QR Code

Colloidal Synthesis of Octahedral Shaped PbSe Nanocrystals from Lead Oleate and Se : Temperature Effect

  • Gokarna, Anisha (Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Jun, Ki-Won (Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Khanna, P.K. (Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET)) ;
  • Baeg, Jin-Ook (Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Seok, Sang-Il (Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • Published : 2005.11.20

Abstract

Formation of octahedral shaped PbSe quantum dots at higher synthesis temperature is being reported in this paper. The synthesis includes the reaction between lead oleate and trioctylphosphine selenide under inert gas conditions to produce PbSe. TEM, SEM, XRD and EDS were used to characterize the samples. The SEM exhibited the formation of spherical shaped nanocrystals at temperature below 140 ${^{\circ}C}$ and octahedral shaped nanoparticles at higher temperatures. Moreover, the TEM also showed the well resolved (111) lattice fringes proving that the nanocrystals were crystalline in nature. Synthesis of highly pure PbSe nanocrystals was another interesting aspect of this research.

Keywords

References

  1. Brus, L. E. J. Phys. Chem. 1986, 90, 2555 https://doi.org/10.1021/j100403a003
  2. Bawendi, M. G.; Carrol, J.; Wilson, W. L.; Brus, L. E. J. Chem. Phys. 1992, 96, 946 https://doi.org/10.1063/1.462114
  3. Eychmuller, A.; Hasselbarth, A.; Katsikas, L.; Weller, H. Ber. Bunsenges. Phys. Chem. 1991, 95, 79 https://doi.org/10.1002/bbpc.19910950115
  4. Heinglein, A. Chem. Rev. 1989, 89, 1861 https://doi.org/10.1021/cr00098a010
  5. Alivisatos, P. J. Phys. Chem. 1996, 100, 13266
  6. Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Nature 2002, 420, 800 https://doi.org/10.1038/nature01217
  7. Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U. Science 2002, 295, 1506 https://doi.org/10.1126/science.1068153
  8. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. Science 2002, 295, 2425 https://doi.org/10.1126/science.1069156
  9. Kim, S.; Markovich, G.; Rezvani, S.; Choi, S.; Wang, K.; Heath, J. Appl. Phys. Lett. 1999, 74, 317 https://doi.org/10.1063/1.123035
  10. Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Milulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142 https://doi.org/10.1021/ja002535y
  11. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
  12. Efros, A. L. Sov. Phys.-Semiconductors 1982, 16, 772
  13. Wise, F. W. J. Opt. Soc. Am. B 1997, 14, 1632 https://doi.org/10.1364/JOSAB.14.001632
  14. Sashchiuk, A.; Amirav, L.; Bashouti, M.; Krueger, M.; Sivan, U.; Lifshitz, E.; Nano Lett. 2004, 4, 159 https://doi.org/10.1021/nl0345116
  15. Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T.; Kagan, C. R. IBM J. Res. Dev. 2001, 45, 47 https://doi.org/10.1147/rd.451.0047
  16. Du, H.; Chen, C.; Krishnan, R.; Krauss, T. D.; Harbold, J. M.; Wise, F. W.; Thomas, M. G.; Silcox, J. Nano Lett. 2002, 11, 1321
  17. Steckel, J. S.; Coe-Sullivan, S.; Bulovic, V.; Bawendi, M. G. Adv. Mater. 2003, 15, 1863
  18. Sashchiuk, A.; Langof, L.; Chaim, R.; Lifshitz, E. J. Crystal Growth 2002, 240, 431 https://doi.org/10.1016/S0022-0248(02)01156-9
  19. Trindade, T.; Monteiro, O.; O'Brien, P.; Motevalli, M. Polyhedron 1999, 18, 1171 https://doi.org/10.1016/S0277-5387(98)00411-2
  20. Ahrenkiel, S. P.; Micic, O. I.; Miedaner, A.; Curtis, C. J.; Nedeljkovic, J. M.; Nozik, A. J. Nano Lett. 2003, 3, 833 https://doi.org/10.1021/nl034152e
  21. Tang, Z.; Kotov, N. Adv. Mater. 2005, 17, 951 https://doi.org/10.1002/adma.200401593
  22. Havaldar, R.; Malik, U.; Patil, K.; Pasricha, R.; Sathaye, S.; Lewis, A.; Amalnerkar, D. Material Research Bulletin 2005, in press

Cited by

  1. Density Functional Theory Modeling of PbSe Nanoclusters: Effect of Surface Passivation on Shape and Composition vol.115, pp.23, 2011, https://doi.org/10.1021/jp201112x
  2. vol.133, pp.14, 2011, https://doi.org/10.1021/ja200750s
  3. Near-Infrared Quantum Dots and Their Delicate Synthesis, Challenging Characterization, and Exciting Potential Applications vol.26, pp.1, 2014, https://doi.org/10.1021/cm4021436
  4. The Synthesis of a High Yield PbSe Quantum Dots by Hot Solution Method vol.29, pp.9, 2005, https://doi.org/10.5012/bkcs.2008.29.9.1729
  5. A room temperature solution-phase process to synthesize pure phase single-crystalline hexagonal cobalt hydroxide nanoplates vol.312, pp.23, 2005, https://doi.org/10.1016/j.jcrysgro.2010.08.038
  6. Photocatalysis of sulfasalazine using Gd-doped PbSe nanoparticles under visible light irradiation: Kinetics, intermediate identification and phyto-toxicological studies vol.30, pp.None, 2005, https://doi.org/10.1016/j.jiec.2015.05.014
  7. Sonocatalysis of a sulfa drug using neodymium-doped lead selenide nanoparticles vol.27, pp.None, 2005, https://doi.org/10.1016/j.ultsonch.2015.05.042