References
- Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811 https://doi.org/10.1021/cr010043d
- Ciganek, E., In Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350
- Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001 https://doi.org/10.1016/0040-4020(96)00154-8
- Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627 https://doi.org/10.2174/1385272023374094
- Rauhut, M.; Currier, H. U. S. Patent 3,074,999, 1963
- Rauhut, M.; Currier, H. Chem. Abstr. 1963, 58, 11224a
- Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815 https://doi.org/10.1246/bcsj.41.2815
- Baylis, A. B.; Hillman, M. E. D. German Patent 2,155,113, 1972
- Baylis, A. B.; Hillman, M. E. D. Chem. Abstr. 1972, 77, 34174q
- Jellerichs, B. G.; Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758 https://doi.org/10.1021/ja0301469
- Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402 https://doi.org/10.1021/ja0121686
- Wang, J.-C.; Ng, S.-S.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 3682 https://doi.org/10.1021/ja030022w
- Luis, A. L.; Krische, M. J. Synthesis 2004, 2579
- Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337 https://doi.org/10.1021/ol049600j
- Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404 https://doi.org/10.1021/ja017123j
- Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035 https://doi.org/10.1002/adsc.200404087
- Methot, J. L.; Roush, W. R. Org. Lett. 2003, 5, 4223 https://doi.org/10.1021/ol0357550
- Mergott, D. J.; Frank, S. A.; Roush, W. R. Org. Lett. 2002, 4, 3157 https://doi.org/10.1021/ol026540d
- Roth, F.; Gygax, P.; Frater, G. Tetrahedron Lett. 1992, 33, 1045 https://doi.org/10.1016/S0040-4039(00)91855-0
- Dinon, F.; Richards, E.; Murphy, P. J.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M. A. Tetrahedron Lett. 1999, 40, 3279 https://doi.org/10.1016/S0040-4039(99)00419-0
- Richards, E.; Murphy, P. J.; Dinon, F.; Fratucello, S.; Brown, P. M.; Gelbrich, T.; Hursthouse, M. B. Tetrahedron 2001, 57, 7771 https://doi.org/10.1016/S0040-4020(01)00744-X
- Brown, P. M.; Kappel, N.; Murphy, P. J. Tetrahedron Lett. 2002, 43, 8707 https://doi.org/10.1016/S0040-4039(02)02142-1
- Yeo, J. E.; Yang, X.; Kim, H. J.; Koo, S. Chem. Commun. 2004, 236
- Gong, J. H.; Im, Y. J.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2002, 43, 1247 https://doi.org/10.1016/S0040-4039(01)02344-9
- Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. Engl. 1983, 22, 795 https://doi.org/10.1002/anie.198307951
- Hill, J. S.; Isaacs, N. S. Tetrahedron Lett. 1986, 27, 5007 https://doi.org/10.1016/S0040-4039(00)85119-9
- Hill, J. S.; Isaacs, N. S. J. Phys. Org. Chem. 1990, 3, 285 https://doi.org/10.1002/poc.610030503
- Price, K. E.; Broadwater, S. J.; Jung, H. M.; McQuade, D. T. Org. Lett. 2005, 7, 147 https://doi.org/10.1021/ol047739o
- Price, K. E.; Broadwater, S. J.; Walker, B. J.; McQuade, D. T. J. Org. Chem. 2005, 70, 3980 https://doi.org/10.1021/jo050202j
- Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S. Tetrahedron Lett. 2001, 42, 3737 https://doi.org/10.1016/S0040-4039(01)00552-4
- Chung, Y. M.; Lee, H. J.; Hwang, S. S.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 799
- Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Lett. 2001, 42, 8341 https://doi.org/10.1016/S0040-4039(01)01791-9
- Kim, J. N.; Im, Y. J.; Gong, J. H.; Lee, K. Y. Tetrahedron Lett. 2001, 42, 4195 https://doi.org/10.1016/S0040-4039(01)00687-6
- Im, Y. J.; Chung, Y. M.; Gong, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 787 https://doi.org/10.5012/bkcs.2002.23.6.787
- Kim, J. N.; Chung, Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209 https://doi.org/10.1016/S0040-4039(02)01314-X
- Im, Y. J.; Lee, K. Y.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2002, 43, 4675 https://doi.org/10.1016/S0040-4039(02)00884-5
- Shanmugam, P.; Rajasingh, P. Tetrahedron 2004, 60, 9283 https://doi.org/10.1016/j.tet.2004.07.067
- Shanmugam, P.; Rajasingh, P. Chem. Lett. 2002, 1212
- Shanmugam, P.; Rajasingh, P. Synlett 2005, 939
- Shanmugam, P.; Rajasingh, P. Tetrahedron Lett. 2005, 46, 3369 https://doi.org/10.1016/j.tetlet.2005.03.086
- Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859 https://doi.org/10.1016/j.tetlet.2005.05.057
- Paquette, L. A.; Mendez-Andino, J. Tetrahedron Lett. 1999, 40, 4301 https://doi.org/10.1016/S0040-4039(99)00781-9
- Kim, J. M.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 2805 https://doi.org/10.1016/j.tetlet.2004.02.047
- Lee, K. Y.; Na, J. E.; Lee, J. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 1280 https://doi.org/10.5012/bkcs.2004.25.8.1280
- Lee, M. J.; Lee, K. Y.; Lee, J. Y.; Kim, J. N. Org. Lett. 2004, 6, 3313 https://doi.org/10.1021/ol048776i
- Declerck, V.; Ribiere, P.; Martinez, J.; Lamaty, F. J. Org. Chem. 2004, 69, 8372 https://doi.org/10.1021/jo048519r
- Krishna, P. R.; Narsingam, M.; Kannan, V. Tetrahedron Lett. 2004, 45, 4773 https://doi.org/10.1016/j.tetlet.2004.04.080
- Anand, R. V.; Baktharaman, S.; Singh, V. K. Tetrahedron Lett. 2002, 43, 5393 https://doi.org/10.1016/S0040-4039(02)01069-9
- Basavaiah, D.; Pandiaraju, S.; Padmaja, K. Synlett 1996, 393
- Basavaiah, D.; Krishnamacharyulu, M.; Suguna Hyma, R.; Pandiaraju, S. Tetrahedron Lett. 1997, 38, 2141 https://doi.org/10.1016/S0040-4039(97)00266-9
- Lee, H. J.; Seong, M. R.; Kim, J. N. Tetrahedron Lett. 1998, 39, 6223 https://doi.org/10.1016/S0040-4039(98)01280-5
- Basavaiah, D.; Bakthadoss, M.; Pandiaraju, S. Chem. Commun. 1998, 1639
- Basavaiah, D.; Bakthadoss, M.; Jayapal Reddy, G. Synthesis 2001, 919
- Lee, H. J.; Kim, T. H.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 1063
- Basavaiah, D.; Mallikarjuna Reddy, R. Tetrahedron Lett. 2001, 42, 3025 https://doi.org/10.1016/S0040-4039(01)00354-9
- Gowrisankar, S.; Lee, K. Y.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6141 https://doi.org/10.1016/j.tetlet.2004.06.057
- Gowrisankar, S.; Lee, M. J.; Lee, S.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 1963 https://doi.org/10.5012/bkcs.2004.25.12.1963
- Gowrisankar, S.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6949 https://doi.org/10.1016/j.tetlet.2004.07.070
- Basavaiah, D.; Pandiaraju, S.; Krishnamacharyulu, M. Synlett 1996, 747
- Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493 https://doi.org/10.1016/j.tet.2004.11.082
- Kim, S. C.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1001 https://doi.org/10.5012/bkcs.2005.26.6.1001
- Chamakh, A.; Amri, H. Tetrahedron Lett. 1998, 39, 375 https://doi.org/10.1016/S0040-4039(97)10593-7
- Chamakh, A.; M'hirsi, M.; Villieras, J.; Lebreton, J.; Amri, H. Synthesis 2000, 295
- Kim, J. N.; Im, Y. J.; Kim, J. M. Tetrahedron Lett. 2002, 43, 6597 https://doi.org/10.1016/S0040-4039(02)01441-7
- Kim, J. N.; Kim, J. M.; Lee, K. Y. Synlett 2003, 821
- Im, Y. J.; Lee, C. G.; Kim, H. R.; Kim, J. N. Tetrahedron Lett. 2003, 44, 2987 https://doi.org/10.1016/S0040-4039(03)00397-6
- Kim, J. N.; Kim, J. M.; Lee, K. Y.; Gowrisankar, S. Bull. Korean Chem. Soc. 2004, 25, 1733 https://doi.org/10.5012/bkcs.2004.25.11.1733
- Kim, J. M.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 328 https://doi.org/10.5012/bkcs.2004.25.2.328
- Familoni, O. B.; Kaye, P. T.; Klass, P. J. Chem. Commun. 1998, 2563
- Basavaiah, D.; Rao, J. S.; Reddy, R. J. J. Org. Chem. 2004, 69, 7379 https://doi.org/10.1021/jo0489871
- Lee, K. Y.; Kim, J. M.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 1493 https://doi.org/10.5012/bkcs.2002.23.10.1493
- Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 939 https://doi.org/10.5012/bkcs.2002.23.7.939
- Basavaiah, D.; Mallikarjuna Reddy, R. M.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron 2002, 58, 3693 https://doi.org/10.1016/S0040-4020(02)00332-0
- O'Dell, D. K.; Nicholas, K. M. J. Org. Chem. 2003, 68, 6427 https://doi.org/10.1021/jo034447c
- Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 1621 https://doi.org/10.1016/j.tetlet.2003.12.133
- Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron 2003, 59, 385 https://doi.org/10.1016/S0040-4020(02)01518-1
- Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343 https://doi.org/10.1021/ol9903741
- Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1281 https://doi.org/10.5012/bkcs.2005.26.8.1281
Cited by
- Chemo- and regio-selective functionalization of Morita–Baylis–Hillman bromides with anthranilic acid vol.87, pp.12, 2009, https://doi.org/10.1139/V09-128
- -substituted isatins with cerium ammonium nitrate (CAN) and alcohol (ROH) vol.87, pp.4, 2009, https://doi.org/10.1139/V09-020
- Synthesis and biological evaluation of tetrazole containing compounds as possible anticancer agents vol.2, pp.6, 2011, https://doi.org/10.1039/c0md00263a
- Tandem allylic substitution–5-exo-dig-carbocyclization: a [4 + 1]-annulation approach to arylidene cyclopentenes from MBH-acetates of acetylenic aldehydes vol.10, pp.45, 2012, https://doi.org/10.1039/c2ob26934a
- Organocatalyzed Intramolecular Michael Addition of Morita-Baylis-Hillman Adducts of β-Arylnitroethylenes: An Entry to 3-Aryl-4-nitrocyclohexanones vol.2012, pp.32, 2012, https://doi.org/10.1002/ejoc.201200884
- Morita-Baylis-Hillman Route to Dimethyl 2,3-Dihydrobenzo[b]oxepine-2,4-dicarboxylates and Methyl 2-(2-Carbomethoxybenzo[b]furan-3-yl)propanoates from Salicylaldehydes vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.233
- Facile Synthesis of 5-Alkylidene-1,5-dihydropyrrol-2-ones from Morita-Baylis-Hillman Adducts vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1337
- Facile Synthesis of 5-Hydroxy-3-pyrrolin-2-ones from Morita-Baylis-Hillman Adducts vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1622
- An Efficient Synthesis of Various γ-Substituted Butenolides from Morita-Baylis-Hillman Adducts vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1781
- Palladium-Catalyzed, Chelation-Assisted Stereo- and Regioselective Synthesis of Tetrasubstituted Olefins by Oxidative Heck Arylation vol.354, pp.13, 2012, https://doi.org/10.1002/adsc.201200306
- Driving the Morita-Baylis-Hillman Reaction to a Multicomponent Organic Transformation vol.2014, pp.4, 2013, https://doi.org/10.1002/ejoc.201301226
- 1,3-Dinitro Alkanes: An Emerging Class of Bidentate Compounds vol.2014, pp.9, 2013, https://doi.org/10.1002/ejoc.201301531
- Synthesis of Poly-Substituted Benzene Derivatives via [3+3] Annulation Protocol from Morita-Baylis-Hillman Adducts and Glutaconates vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3503
- An Efficient Conjugate Addition of Dialkyl Phosphite to Electron-Deficient Olefins: The Use of a Nucleophilic Organocatalyst to Form a Strong Base vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.989
- An Expedient Synthesis of Cinnamyl Fluorides from Morita-Baylis-Hillman Adducts vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.993
- ), Ring- Expansion by Palladium Rearrangement, and Aromatization: An Expedient Synthesis of 4-Arylnicotinates from Morita-Baylis-Hillman Adducts vol.355, pp.10, 2013, https://doi.org/10.1002/adsc.201300211
- Thermal Intramolecular [2+2] Cycloaddition: Synthesis of 3-Azabicyclo[3.1.1]heptanes from Morita-Baylis-Hillman Adduct-Derived 4,4-Diaryl-1,3-dienes vol.356, pp.16, 2014, https://doi.org/10.1002/adsc.201400571
- Sequential Allylic Substitution/Pauson–Khand Reaction: A Strategy to Bicyclic Fused Cyclopentenones from MBH-Acetates of Acetylenic Aldehydes vol.79, pp.17, 2014, https://doi.org/10.1021/jo500962d
- ]quinolines from Morita-Baylis-Hillman Adducts of 2-Bromobenzaldehydes vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10050
- Synthesis of 3-(γ,δ-Disubstituted)allylidene-2-Oxindoles from Isatins by Wittig Reaction with Morita-Baylis-Hillman Bromides vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10053
- ]quinoline-1,2-diones via Intramolecular Friedel-Crafts Cyclization Protocol vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10539
- Synthesis of 1,3,4-Trisubstituted Benzenes from Morita-Baylis-Hillman Adducts of α-Bromocinnamaldehyde via [5+1] Annulation Strategy vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10577
- an Intramolecular Friedel-Crafts Alkenylation vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10337
- Synthesis of Tetrahydropyridines from Morita-Baylis-Hillman Acetates of α,β-Unsaturated Aldehydes Via an Intramolecular 1,6-Conjugate Addition vol.37, pp.1, 2015, https://doi.org/10.1002/bkcs.10610
- ), Ring-Expansion by Palladium Rearrangement, and Aromatization vol.37, pp.2, 2016, https://doi.org/10.1002/bkcs.10636
- An Efficient Synthesis of α-Isothiocyanato-α,β-unsaturated Esters from Morita-Baylis-Hillman Adducts vol.37, pp.4, 2016, https://doi.org/10.1002/bkcs.10705
- ]azepines from Morita-Baylis-Hillman Adducts via Pictet-Spengler Reaction vol.37, pp.5, 2016, https://doi.org/10.1002/bkcs.10752
- 2′-Intramolecular Oxidative Nucleophilic Substitution of Hydrogen-E2 Elimination vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10774
- Synthesis of Aminonaphthalenes from Morita-Baylis-Hillman Carbonates via 6π-Electrocyclization of Ketenimine Intermediates vol.37, pp.7, 2016, https://doi.org/10.1002/bkcs.10812
- -allylindoles to 3-Alkyl-2-allylindoles vol.37, pp.9, 2016, https://doi.org/10.1002/bkcs.10890
- Baylis-Hillman Reaction: In Situ Generated Isoquinolinium Species as Excellent Electrophiles for Coupling with Alkyl Acrylates and Acrylonitrile vol.2017, pp.34, 2017, https://doi.org/10.1002/ejoc.201700743
- Silica Chloride-Catalyzed One-Pot Isomerization - Chlorination, Arylation, and Etherification of Baylis - Hillman Adducts vol.60, pp.11, 2007, https://doi.org/10.1071/CH07123
- Catalytic Asymmetric Construction of Spiro(γ-butyrolactam-γ-butyrolactone) Moieties through Sequential Reactions of Cyclic Imino Esters with Morita-Baylis-Hillman Bromides vol.18, pp.40, 2012, https://doi.org/10.1002/chem.201201475
- 2′ Reaction/C-H Functionalization/Aromatization through the Reaction of Morita-Baylis-Hillman Acetates with Nitroalkanes vol.2018, pp.9, 2018, https://doi.org/10.1002/ejoc.201701574
- Construction of Adjacent Quaternary and Tertiary Stereocentersvia an Organocatalytic Allylic Alkylation of Morita–Baylis–Hillman Carbonates vol.349, pp.3, 2007, https://doi.org/10.1002/adsc.200600467
- All-Carbon Intramolecular Conjugate Displacement Reactions: An Effective Route to Carbocycles vol.46, pp.48, 2007, https://doi.org/10.1002/anie.200703022
- Morita-Baylis-Hillman Reactions Between Conjugated Nitroalkenes or Nitrodienes and Carbonyl Compounds vol.2009, pp.24, 2009, https://doi.org/10.1002/ejoc.200900475
- Enantioselective Synthesis of β-Iodo Morita-Baylis-Hillman Esters by a Catalytic Asymmetric Three-Component Coupling Reaction vol.121, pp.24, 2009, https://doi.org/10.1002/ange.200900351
- Enantioselective Synthesis of β-Iodo Morita-Baylis-Hillman Esters by a Catalytic Asymmetric Three-Component Coupling Reaction vol.48, pp.24, 2009, https://doi.org/10.1002/anie.200900351
- catalyst-free reactions of Baylis-Hillman acetates, alcohols, and amines with 2-aminobenzimidazole pp.19435193, 2010, https://doi.org/10.1002/jhet.324
- Synthesis of Exo-Methylenecyclopentane Derivatives via Radical Cyclization Starting from the Baylis-Hillman Adducts vol.27, pp.12, 2005, https://doi.org/10.5012/bkcs.2006.27.12.2097
- Synthesis of Cyclopropane Derivatives Starting from the Baylis-Hillman Adducts Using Sulfur Ylide Chemistry vol.27, pp.2, 2005, https://doi.org/10.5012/bkcs.2006.27.2.319
- Synthesis of 3,4-Disubstituted Pyridines Starting from Baylis-Hillman Adducts Using Schweizer Reaction vol.27, pp.3, 2005, https://doi.org/10.5012/bkcs.2006.27.3.439
- α-Vinylation of Haloquinones with Methyl Acrylate and MVK under Baylis-Hillman Reaction Conditions vol.27, pp.5, 2005, https://doi.org/10.5012/bkcs.2006.27.5.769
- Synthesis of Hexahydrofuro[2,3-b]furan and Hexahydrofuro[2,3-b]pyran Derivatives Starting from Baylis-Hillman Adducts via the Ueno-Stork Reaction vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.929
- Synthesis of 2-Benzylidene-7a-alkyltetrahydropyrrolizine-3,5-diones Starting from Baylis-Hillman Adducts vol.27, pp.7, 2005, https://doi.org/10.5012/bkcs.2006.27.7.1063
- Synthesis of 3-Aryl-3-hydroxypyrrolidin-2-ones and 2-Benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2H-pyrrolo[3,4-c]quinoline-1,4-dione Derivatives from the Baylis-Hillman Adducts of Isatins vol.27, pp.8, 2005, https://doi.org/10.5012/bkcs.2006.27.8.1133
- Baylis—Hillman Reaction and Chemical Transformations of Baylis—Hillman Adducts vol.37, pp.8, 2006, https://doi.org/10.1002/chin.200608234
- Synthesis of 3-aryl-3-hydroxypyrrolidin-2-ones and 2-benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2H-pyrrolo[3,4-c]quinoline-1,4-dione derivatives from the Baylis–Hillman adducts of isatins vol.47, pp.20, 2006, https://doi.org/10.1016/j.tetlet.2006.03.074
- Synthesis of novel spiropyrrolidines through [3+2] cycloaddition reactions with Baylis–Hillman adducts as dipolarophiles vol.47, pp.31, 2005, https://doi.org/10.1016/j.tetlet.2006.05.149
- Regioselective construction of polysubstituted phenols from Baylis–Hillman adducts via formal [4+2] annulation strategy vol.47, pp.32, 2006, https://doi.org/10.1016/j.tetlet.2006.06.031
- Synthesis of β,γ-Disubstituted α-Methylene-γ-butyrolactams Starting from the Baylis-Hillman Adducts vol.28, pp.1, 2007, https://doi.org/10.5012/bkcs.2007.28.1.143
- Synthesis of 3-Benzyl- or 3-Benzoyl-7,8-dihydro-6H-chromene Derivatives Starting from Baylis-Hillman Adducts vol.28, pp.1, 2005, https://doi.org/10.5012/bkcs.2007.28.1.147
- Expeditious Synthesis of 1,3,4-Trisubstituted Pyrazoles from Baylis-Hillman Adducts vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1841
- Synthesis of Indoles and Benzisoxazolines from Baylis-Hillman Adducts of 2-Nitrobenzaldehydes vol.28, pp.2, 2005, https://doi.org/10.5012/bkcs.2007.28.2.333
- All-Carbon Intramolecular Conjugate Displacement Reactions: An Effective Route to Carbocycles vol.119, pp.48, 2005, https://doi.org/10.1002/ange.200703022
- An Expedient Synthesis of β-Phenyl Substituted Baylis-Hillman and Aza-Baylis-Hillman Adducts vol.29, pp.1, 2005, https://doi.org/10.5012/bkcs.2008.29.1.265
- Expedient Synthesis of 3-Benzoylflavones by PCC Oxidation of 3-Benzylideneflavanones vol.29, pp.10, 2005, https://doi.org/10.5012/bkcs.2008.29.10.2039
- Regioselective Synthesis of Poly-Substituted Pyrroles from Baylis-Hillman Adducts via the [3+1+N] Annulation Strategy vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2215
- One-Pot Synthesis of Naphthalenes from Baylis-Hillman Adducts via Pd-Mediated Successive Allylation and Arylation vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2537
- Synthesis of Poly-Substituted Phenolds from Baylis-Hillman Adducts and 1,3-Dinitroalkanes vol.29, pp.3, 2005, https://doi.org/10.5012/bkcs.2008.29.3.701
- Synthesis of β-Aryl Substituted N-Tosyl Aza-Baylis-Hillman Adducts: Heck Reaction of N-Tosyl Aza-Baylis-Hillman Adducts vol.29, pp.8, 2005, https://doi.org/10.5012/bkcs.2008.29.8.1583
- Stereoselective synthesis of 3-spiro-α-methylene-γ-butyrolactone oxindoles from Morita–Baylis–Hillman adducts of isatin vol.64, pp.15, 2005, https://doi.org/10.1016/j.tet.2008.02.002
- Pd-Mediated Cross-Coupling Reactions between the Bromide of Baylis-Hillman Adduct and Organostannanes vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.726
- Expedient Synthesis of 5-Benzoylpyrimidine-2,4-diones from Baylis-Hillman Adducts vol.30, pp.4, 2005, https://doi.org/10.5012/bkcs.2009.30.4.938
- Synthesis of Rearranged N-Tosyl Aza-Baylis-Hillman Adducts under Acidic Conditions Catalyzed by CH3SO3H or Montmorillonite K10 vol.30, pp.4, 2005, https://doi.org/10.5012/bkcs.2009.30.4.941
- Expedient One-Pot Synthesis of γ-hydroxybutenolides Starting from Baylis-Hillman Adducts: Lactonization, Isomerization, and Aerobic Oxidation of α-Methylene-γ-hydroxyester vol.30, pp.5, 2009, https://doi.org/10.5012/bkcs.2009.30.5.1012
- An efficient ultrasound-promoted synthesis of the Baylis–Hillman adducts catalyzed by imidazole and L-proline vol.16, pp.4, 2005, https://doi.org/10.1016/j.ultsonch.2008.12.013
- A highly α-regioselective In(OTf)3-catalyzed N-nucleophilic substitution of cyclic Baylis–Hillman adducts with aromatic amines vol.65, pp.17, 2005, https://doi.org/10.1016/j.tet.2009.02.048
- The Rauhut-Currier reaction: a history and its synthetic application vol.65, pp.21, 2005, https://doi.org/10.1016/j.tet.2009.02.066
- One-Pot Synthesis of New Type Aza- Baylis-Hillman Adducts from Chlorovinyl Aldehydes under Solvent-Free Condition vol.34, pp.1, 2010, https://doi.org/10.3184/030823410x12627215361201
- Construction of a Tetracyclic Butterfly-Like Scaffold: Palladium-Catalyzed Heck/Arylation Cascade vol.16, pp.8, 2005, https://doi.org/10.1002/chem.200903029
- Facile Synthesis of N-Tosyl Aza-Baylis-Hillman Adducts of Acrylamide via a Pd-Catalyzed Hydration of Nitrile to Amide vol.31, pp.3, 2010, https://doi.org/10.5012/bkcs.2010.31.03.700
- Rauhut–Currier type homo- and heterocouplings involving nitroalkenes and nitrodienes vol.8, pp.21, 2010, https://doi.org/10.1039/c0ob00062k
- Remarkable Rate Acceleration of Baylis-Hillman Reaction of Notorious α,β-Unsaturated Aldehydes Catalyzed by Proton Donor vol.32, pp.3, 2011, https://doi.org/10.5012/bkcs.2011.32.3.1087
- Regioselective Synthesis of Fluorenones via the Consecutive In-Mediated Barbier Reaction, Pd-Catalyzed Cyclization, and Friedel-Crafts Reaction Starting from Baylis-Hillman Adducts vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1387
- Palladium-catalyzed synthesis of indane and cyclobuta[a]indenes from homoallylic alcohols derived from Baylis–Hillman adducts: base-dependent stereoselectivity for the benzylidene group in cyclo vol.67, pp.19, 2011, https://doi.org/10.1016/j.tet.2011.03.070
- Tandem reaction of Morita-Baylis-Hillman alcohols derived from acrylic nitrile with 2-aminobenzimidazole in ionic liquid [BMIM]Cl/H2O vol.90, pp.1, 2005, https://doi.org/10.1139/v11-095
- A Practical Synthesis of Morita-Baylis-Hillman Adducts of Aryl Vinyl Ketones Catalyzed by a Proton Donor vol.33, pp.6, 2005, https://doi.org/10.5012/bkcs.2012.33.6.2023
- One-Pot Synthesis of 5-Hydroxypyrrolin-2-one Derivatives from Modified Morita-Baylis-Hillman Adducts via a Consecutive CuI-Mediated Aerobic Oxidation, Allylic Iodination, Hydration of Nitrile, and Lac vol.33, pp.6, 2005, https://doi.org/10.5012/bkcs.2012.33.6.2079
- Organocatalyzed Baylis-Hillman reaction: an enantioselective approach vol.23, pp.17, 2005, https://doi.org/10.1016/j.tetasy.2012.08.013
- Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles from α-Alkenyl-α,β-Enones Derived from Morita-Baylis-Hillman Adducts vol.34, pp.10, 2005, https://doi.org/10.5012/bkcs.2013.34.10.2915
- An Efficient Synthesis of Poly-Substituted Phenols and Pyridines from Morita-Baylis-Hillman Acetates and Diethyl Oxalacetate vol.34, pp.10, 2013, https://doi.org/10.5012/bkcs.2013.34.10.3027
- Copper-promoted cascade reaction of active methylenes with MBH-acetates of acetylenic aldehydes to functionalized cyclopentenes vol.4, pp.14, 2005, https://doi.org/10.1039/c3ra46229c
- An Expedient Approach for the Synthesis of 1-Alkyl-4-propionylpyrrolidin-2-ones vol.44, pp.1, 2005, https://doi.org/10.1080/00397911.2013.786091
- Enantioselective allylic amination of MBH carbonates catalyzed by novel chiral 4-dialkylaminopyridine catalysts vol.1, pp.10, 2014, https://doi.org/10.1039/c4qo00210e
- Mechanistic insights can resolve the low reactivity and selectivity issues in intermolecular Rauhut-Currier (RC) reaction of γ-hydroxyenone vol.44, pp.29, 2005, https://doi.org/10.1039/d0nj02732d
- Morita‐Baylis‐Hillman Reaction Accessing GABA Intermediates: Synthesis of New Lipophilic Hydroxylatedγ‐Nitroesters vol.5, pp.38, 2005, https://doi.org/10.1002/slct.202002824