DOI QR코드

DOI QR Code

Fluorescence Sensing of Dopamine

  • Jang, Yun-Jung (Department of Chemistry and Division of Nano Science, Ewha Womans University) ;
  • Jun, Ji-Hyun (Department of Chemistry and Division of Nano Science, Ewha Womans University) ;
  • Swamy, K.M.K. (Department of Chemistry and Division of Nano Science, Ewha Womans University) ;
  • Nakamura, Kensuke (Graduate School of Information Science, Nara Institute of Science and Technology) ;
  • Koh, Hwa-Soo (Department of Chemistry and Division of Nano Science, Ewha Womans University) ;
  • Yoon, Yeo-Joon (Department of Chemistry and Division of Nano Science, Ewha Womans University) ;
  • Yoon, Ju-Young (Department of Chemistry and Division of Nano Science, Ewha Womans University)
  • Published : 2005.12.20

Abstract

Keywords

References

  1. Sugihara, J. M.; Bowman, C. M. J. Am. Chem. Soc. 1958, 80, 2443 https://doi.org/10.1021/ja01543a024
  2. Lorand, J. P.; Edwards, J. O. J. Org. Chem. 1959, 24, 769 https://doi.org/10.1021/jo01088a011
  3. Yoon, J.; Czarnik, A. W. J. Am. Chem. Soc. 1992, 114, 5874 https://doi.org/10.1021/ja00040a067
  4. James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1994, 477
  5. James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew. Chem. Int. Ed. Engl. 1994, 33, 2207 https://doi.org/10.1002/anie.199422071
  6. James, T. D.; Sandanayake, K. R. A. S.; Iguchi, R.; Shinkai, S. J. Am. Chem. Soc. 1995, 117, 8982 https://doi.org/10.1021/ja00140a013
  7. James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Nature (London) 1995, 374, 345 https://doi.org/10.1038/374345a0
  8. James, T. D.; Shinmori, H.; Shinkai, S. Chem. Commun. 1997, 71
  9. Arimori, S.; Bell, M. L.; Oh, C. S.; Frimat, K. A.; James, T. D. Chem. Commun. 2001, 1836
  10. Arimori, S.; Bell, M.; Oh, C. S.; James, T. D. Org. Lett. 2002, 4, 4249 https://doi.org/10.1021/ol026802b
  11. Zhao, J.; Davidson, M. G.; Mahon, M. F.; Kociok-Köhn, G.; James, T. D. J. Am. Chem. Soc. 2004, 126, 16179 https://doi.org/10.1021/ja046289s
  12. Norrild, J. C.; Eggert, H. J. Am. Chem. Soc. 1995, 117, 1479 https://doi.org/10.1021/ja00110a003
  13. Eggert, H.; Frederiksen, J.; Morin, C.; Norrild, J. C. J. Org. Chem. 1999, 64, 3846 https://doi.org/10.1021/jo9819279
  14. Yang, W.; He, H.; Drueckhammer, D. G. Angew. Chem. Int. Ed. 2001, 40, 1714 https://doi.org/10.1002/1521-3773(20010504)40:9<1714::AID-ANIE17140>3.0.CO;2-F
  15. Karnati, V. V.; Gao, X.; Gao, S.; Yang, W.; Ni, W.; Sankar, S.; Wamg, B. Bioorg. Med. Chem. Lett. 2002, 12, 3373 https://doi.org/10.1016/S0960-894X(02)00767-9
  16. Cao, H.; Heagy, M. D. J. Fluoresc. 2004, 14, 569, and reference therein https://doi.org/10.1023/B:JOFL.0000039344.34642.4c
  17. Swamy, K. M. K.; Jang, Y. J.; Park, M. S.; Koh, H. S.; Lee, S. K.; Yoon, Y. J.; Yoon, J. Tetrahedron Lett. 2005, 46, 3453 https://doi.org/10.1016/j.tetlet.2005.03.121
  18. Gingrich, J. A.; Caron, M. G. Annu. Rev. Neurosci. 1993, 16, 299 https://doi.org/10.1146/annurev.ne.16.030193.001503
  19. Yoon, J.; Czarnik, A. W. Bioorg. Med. Chem. 1993, 1, 267 https://doi.org/10.1016/S0968-0896(00)82131-8
  20. Coskun, A.; Akkaya, E. U. Org. Lett. 2004, 6, 3107 https://doi.org/10.1021/ol0488744
  21. Secor, K. E.; Glass, T. E. Org. Lett. 2004, 6, 3727 https://doi.org/10.1021/ol048625f
  22. Association constants were obtained using the computer program ENZFITTER, available from Elsevier-BIOSOFT, 68 Hills Road, Cambridge CB2 1LA, United Kingdom
  23. Conners, K. A. Binding Constants, The Measurement of Molecular Complex Stability; Wiley: New York, 1987
  24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al- Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head- Gordon, M.; Gonzalez, C.; Pople, J. A., Gaussian 94, (Revision B.3); Gaussian, Inc.: Pittsburgh, PA, 1995

Cited by

  1. Mini-Review: Artificial Catecholamine Receptors in Aqueous Media vol.20, pp.4, 2008, https://doi.org/10.1080/10610270701278269
  2. Visual detection of dopamine and monitoring tyrosinase activity using a pyrocatechol violet–Sn4+ complex vol.47, pp.46, 2011, https://doi.org/10.1039/c1cc15587c
  3. Fluorescent Sensing of Triphosphate Nucleotides via Anthracene Derivatives vol.76, pp.10, 2011, https://doi.org/10.1021/jo2000836
  4. Recognition and sensing of various species using boronic acid derivatives vol.48, pp.48, 2012, https://doi.org/10.1039/c2cc31985c
  5. Highly effective discrimination of catecholamine derivatives via FRET-on/off processes induced by the intermolecular assembly with two fluorescence sensors vol.49, pp.81, 2013, https://doi.org/10.1039/c3cc45077e
  6. Fast, sensitive and selective colorimetric gold bioassay for dopamine detection vol.3, pp.29, 2015, https://doi.org/10.1039/C5TB00495K
  7. Highly promising discrimination of various catecholamines using ratiometric fluorescence probes with intermolecular self-association of two sensing elements vol.5, pp.96, 2015, https://doi.org/10.1039/C5RA10321E
  8. -DOPA vol.51, pp.71, 2015, https://doi.org/10.1039/C5CC03495G
  9. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis vol.116, pp.12, 2016, https://doi.org/10.1021/acs.chemrev.5b00400
  10. Fluorescent and Colorimetric Chemosensors for Anions, Metal Ions, Reactive Oxygen Species, Biothiols, and Gases vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10926
  11. Picomole Dopamine Detection Using Optical Chips vol.12, pp.5, 2017, https://doi.org/10.1007/s11468-016-0412-1
  12. Tetracarboxylic acids on a thiacalixarene scaffold: synthesis and binding of dopamine hydrochloride pp.1369-9261, 2018, https://doi.org/10.1039/C7NJ03953K
  13. Computer-Based De Novo Design, Synthesis, and Evaluation of Boronic Acid-Based Artificial Receptors for Selective Recognition of Dopamine vol.9, pp.9, 2008, https://doi.org/10.1002/cbic.200700663
  14. Catechol boronate formation and its electrochemical oxidation pp.16, 2009, https://doi.org/10.1039/b900016j
  15. Carbohydrate recognition by boronolectins, small molecules, and lectins pp.10981128, 2009, https://doi.org/10.1002/med.20155
  16. Fluorescence Sensing of Dopamine. vol.37, pp.14, 2005, https://doi.org/10.1002/chin.200614177
  17. Nucleoside Recognition by a Fluorescent Macrolactam vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2498
  18. Development of Highly Selective Fluorescent Chemosensors for Fluoride Ion vol.51, pp.3, 2005, https://doi.org/10.5012/jkcs.2007.51.3.258
  19. Differentiating response of 2,7-dichlorofluorescein intercalated CTAB modified Na-MMT clay matrix towards dopamine and ascorbic acid investigated by electronic, fluorescence spectroscopy and electroch vol.77, pp.None, 2005, https://doi.org/10.1016/j.clay.2013.01.017
  20. Acrylic Polymers with Pendant Phenylboronic Acid Moieties as “Turn-Off” and “Turn-On” Fluorescence Solid Sensors for Detection of Dopamine, Glucose, and Fructose in Water vol.4, pp.9, 2005, https://doi.org/10.1021/acsmacrolett.5b00465
  21. A High‐Affinity Fluorescent Sensor for Catecholamine: Application to Monitoring Norepinephrine Exocytosis vol.131, pp.23, 2005, https://doi.org/10.1002/ange.201810919
  22. A High‐Affinity Fluorescent Sensor for Catecholamine: Application to Monitoring Norepinephrine Exocytosis vol.58, pp.23, 2005, https://doi.org/10.1002/anie.201810919
  23. Electrochemical Dopamine Sensors Based on Graphene vol.10, pp.2, 2005, https://doi.org/10.5229/jecst.2019.10.2.185
  24. Boronic acid sensors with double recognition sites: a review vol.145, pp.3, 2005, https://doi.org/10.1039/c9an00741e