EXPERIMENTAL
Preparation of S-2-pyridyl thiocarbamate (1).
To a solution of S,S-di(2-pyridyl)dithiocarbonate (1.24 g, 5.0 mmol) in dichloromethane (20 mL) was added N,O-dimethylhydroxylamine hydrochloride (487.8 mg, 5.0 mmol) and triethylamine (697 μL, 5.0 mmol) at 0 ℃. After being stirred for 1 h, the mixture was poured into brine (40 mL) and extracted with dichloromethane (3×25 mL). The combined organic phases were dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography using 50% EtOAc/n-hexane as an eluant to give 1 (902.4 mg, 91%). 1H NMR (300 MHz, CDCl3) δ 8.60-8.63 (m, 1H), 7.70-7.72 (m, 2H), 7.25-7.30 (m, 1H), 3.83 (s, 3H), 3.24 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 169.5, 152.6, 150.5, 137.3, 131.2, 123.7, 62.4, 34.8; FT-IR (film) 3050, 2977, 2937, 1672 (C=O), 1573, 1451, 1341, 1175, 1073, 985, 771 cm-1; Ms m/z (%) 198 (M+, 1), 167 (47), 138 (58), 110 (14), 78 (C5H4N+, 100).
Preparation of N-methoxy-N-methyl-p-methoxybenzamide (4g)
N-Methoxy-N-methylnonamide (4a): 1H NMR (300 MHz, CDCl3) δ 3.68 (s, 3H), 3.18 (s, 3H), 2.41 (t, J=7.6 Hz, 2H), 1.56-1.68 (m, 2H), 1.19-1.38 (m, 10H), 0.88 (t, J=6.7 Hz, 3H); FT-IR (film) 2928, 2855, 1668 (C=O), 1465, 1385, 1179, 1121 cm-1; Ms m/z (%) 141 [CH3(CH2)7CO+, 100], 71 (66), 61 (71), 57 (72), 55 (30).
N-Methoxy-N-methylcyclohexanecarboxamide (4b): 1H NMR (300 MHz, CDCl3) δ 3.70 (s, 3H), 3.18 (s, 3H), 2.64-2.72 (m, 1H), 1.73-1.81 (m, 5H), 1.46-1.50 (m, 2H), 1.25-1.28 (m, 3H); FT-IR (film) 2931, 2855, 1658 (C=O), 1449, 1177, 1116, 994 cm-1; Ms m/z (%) 171 (M+, 2), 111 (39), 83 (c-C6H11+, 100), 55 (44).
N-Methoxy-N-methylphenylpropiolamide (4c): M.p. 37 ℃; 1H NMR (300 MHz, CDCl3) δ 7.56-7.64 (m, 2H), 7.34-7.44 (m, 3H), 3.85 (s, 3H), 3.30 (s, 3H); FT-IR (KBr) 3063, 2974, 2936, 2219, 1642 (C=O), 1382, 1101, 759, 690 cm-1; Ms m/z (%) 189 (M+, 2), 130 (14), 129 (C6H5C2CO+, 100), 101 (6), 75 (10).
N-Methoxy-N-methylbenzamide (4d): 1H NMR (300 MHz, CDCl3) δ 7.65-7.68 (m, 2H), 7.39-7.45 (m, 3H), 3.55 (s, 3H), 3.36 (s, 3H); FT-IR (film) 3060, 2971, 2936, 1644 (C=O), 1380, 1214, 788, 707 cm-1; Ms m/z (%) 165 (M+, 2), 106 (8), 105 (C6H5CO+, 100), 77 (50).
N-Methoxy-N-methyl-o-methylbenzamide (4e): 1H NMR (300 MHz, CDCl3) δ 7.17-7.32 (m, 4H), 3.53 (s, 3H), 3.30 (s, 3H), 2.34 (s, 3H); FT-IR (film) 3063, 2970, 2935, 1650 (C=O), 1380, 1063, 773 cm-1; Ms m/z (%) 179 (M+, 2), 120 (10), 119 (o-CH3-C6H4CO+, 100), 91 (53), 65 (14).
N-Methoxy-N-methyl-p-methylbenzamide (4f): 1H NMR (300 MHz, CDCl3) δ 7.59 (d, J=8.0 Hz, 2H), 7.19 (d, J=8.0 Hz, 2H), 3.55 (s, 3H), 3.34 (s, 3H), 2.38 (s, 3H); FT-IR (film) 3029, 2967, 2934, 1643 (C=O), 1613, 1377, 1181, 830 cm-1; Ms m/z (%) 179 (M+, 2), 120 (10), 119 (p-CH3-C6H4CO+, 100), 91 (44).
N-Methoxy-N-methyl-p-chlorobenzamide (4h): 1H NMR (300 MHz, CDCl3) δ 7.65 (d, J=6.8 Hz, 2H), 7.27 (d, J=6.8 Hz, 2H), 3.53 (s, 3H), 3.35 (s, 3H); FT-IR (film) 3067, 2971, 2935, 1646 (C=O), 1594, 1380, 1091, 840 cm-1; Ms m/z (%) 199 (M+, 2), 141 (34), 139 (p-Cl-C6H4CO+, 100), 113 (11), 111 (34), 75 (16).
N-Methoxy-N-methyl-α-naphthamide (4i): M.p. 38 ℃; 1H NMR (300 MHz, CDCl3) δ 7.86-7.91 (m, 3H), 7.46-7.56 (m, 4H), 3.52 (s, 3H), 3.42 (s, 3H); FT-IR (KBr) 3056, 2971, 2934, 1650 (C=O), 1592, 1374, 1102, 800, 778 cm-1; Ms m/z (%) 215 (M+, 8), 156 (13), 155 (C10H7CO+, 100), 128 (9), 127 (70).
N-Methoxy-N-methyl-2-thiophenecarboxamide (4j): 1H NMR (300 MHz, CDCl3) δ 7.97 (dd, J1=3.8 Hz, J2=1.1 Hz, 1H), 7.56 (dd, J1=5.0 Hz, J2=1.1 Hz, 1H), 7.11 (dd, J1=5.0 Hz, J2=3.8 Hz, 1H), 3.78 (s, 3H), 3.38 (s, 3H); FT-IR (film) 3096, 2974, 2936, 1633 (C=O), 1423, 1383, 1208, 979, 728 cm-1; Ms m/z (%) 171 (M+, 10), 112 (7), 111 (C4H3SCO+, 100), 83 (8).
RESULTS AND DISCUSSION
S-2-Pyridyl thiocarbamate (1) was prepared by the addition of N,O-dimethylhydroxylamine hydrochloride (3) and triethylamine to a solution of S,Sdi(2-pyridyl)dithiocarbonate (2) in dichloromethane at 0 ℃ (Scheme 1). The reaction proceeded smoothly with the selective substitution of 2-thiopyridyl group by 3 within 1 h at 0 ℃. After usual aqueous workup, the condensed residue was purified by silica gel column chromatography using 50% EtOAc/n-hex-ane as an eluant to give 1 in 91% yield. The reagent 1 could be stored in a refrigerator for several months without any decomposition.
Scheme 1
As shown in Table 1, various N-methoxy-N-methylamides were synthesized in high yields (74-91%) by this method. The reaction proceeded smoothly for both aliphatic (4a-4c) and aromatic Grignard reagents (4d-4j). Furthermore, the kind of electron donating (4f, 4g) and electron withdrawing group (4h) in p-substituted phenylmagnesium bromide didn't influence on the selective substitution of 2-thiopyridyl group. However, the reaction of 1 with phenylethynylmagnesium bromide (4c), o-methylphenylmagnesium bromide (4e), and α-naphthylmagnesium bromide (4i) required 1.5 equiv of Grignard reagent due to the decreased nucleophi-licity or steric effect for the high yield formation of the corresponding N-methoxy-N-methylamides.
Table 1aThe Grignard reagents were added at 0 ℃ over 10 min. bRMgCl was used. c1.5 equiv was used. dThe reaction was carried out between 0 ℃ and room temperature.
The successful preparation of N-methoxy-N-methylamides (4) using 1 depends largely on the selective substitution of 2-thiopyridyl group. We anticipated that 2-thiopyridyl group capable of forming 6-membered chelate would be more reactive than N-methoxy-N-methylamino group toward Grignard reagent. Thus, the treatment of 1 with 1 equiv of p-methoxyphenylmagnesium bromide at 0 ℃ over a period of 10 min gave N-methoxy-N-methyl-p-methoxybenzamide (4g) in 90% yield without appreciable side products. The preferential formation of 4 is presumably due to the stability of 6-membered chelate between magnesium atom of Grignard reagent and carbonyl oxygen/ring nitrogen atom of 1, which dissociates to give 4 after hydrolysis.
In conclusion, the present method provides a new synthesis of N-methoxy-N-methylamides using 1 from alkyl halides in connection with (i) availability of starting material (ii) convenience of one step operation (iii) high yield of 4 and may be utilized in many synthetic applications.
References
- Sibi, M. P. Org. Prep. Proced. Int. 1993, 25, 15 https://doi.org/10.1080/00304949309457931
- Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815 https://doi.org/10.1016/S0040-4039(01)91316-4
- Liu, J.; Ikemoto, N.; Petrillo, D.; Armstrong, J. D. Tetrahedron Lett. 2002, 43, 8223 https://doi.org/10.1016/S0040-4039(02)02031-2
- Einhorn, J.; Einhorn, C.; Luche, J. L. Synth. Comm. 1990, 20, 1105 https://doi.org/10.1080/00397919008052817
- Poss, M. A.; Reid, J. A. Tetrahedron Lett. 1992, 33, 1411 https://doi.org/10.1016/S0040-4039(00)91634-4
- Brenner-Weiss, G.; Giannis, A.; Sandhoff, K. Tetrahedron 1992, 48, 5855 https://doi.org/10.1016/S0040-4020(01)90177-2
- Sibi, M. P.; Stessman, C. C.; Schultz, J. A.; Christensen, J. W.; Lu, J.; Marvin, M. Synth. Comm. 1995, 25, 1255 https://doi.org/10.1080/00397919508012689
- Fehrentz, J. A.; Castro, B. Synthesis 1983, 676
- Shreder, K.; Zhang, L.; Goodman, M. Tetrahedron Lett. 1998, 39, 221 https://doi.org/10.1016/S0040-4039(97)10530-5
- Wen, J. J.; Crews, C. M. Tetrahedron: Asymmetry 1998, 9, 1855 https://doi.org/10.1016/S0957-4166(98)00183-9
- Luca, L. D.; Giacomelli, G.; Taddei, M. J. Org. Chem. 2001, 66, 2534 https://doi.org/10.1021/jo015524b
- Hioki, K.; Kobayashi, H.; Ohkihara, R.; Tani, S.; Kunishima, M. Chem. Pharm. Bull. 2004, 52, 470 https://doi.org/10.1248/cpb.52.470
- Raghuram, T.; Vijaysaradhi, S.; Singh, I.; Singh, J. Synth. Comm. 1999, 29, 3215 https://doi.org/10.1080/00397919908085946
- Lucet, D.; Gall, T. L.; Mioskowski, C.; Ploux, O.; Marquet, A. Tetrahedron: Asymmetry 1996, 7, 985 https://doi.org/10.1016/0957-4166(96)00098-5
- Falorni, M.; Giacomelli, G.; Spanedda, A. M. Tetrahedron: Asymmetry. 1998, 9, 3039 https://doi.org/10.1016/S0957-4166(98)00305-X
- Angelastro, M. R.; Peet, N. P.; Bey, P. J. Org. Chem. 1989, 54, 3913 https://doi.org/10.1021/jo00277a031
- Irako, N.; Hamada, Y.; Shioiri, T. Tetrahedron 1992, 48, 7251 https://doi.org/10.1016/S0040-4020(01)88264-8
- Dechantsreiter, M. A.; Burkhart, F.; Kessler, H. Tetrahedron Lett. 1998, 39, 253 https://doi.org/10.1016/S0040-4039(97)10566-4
- Woo, J. C. S.; Fenster, E.; Dake, G. R. J. Org. Chem. 2004, 69, 8984 https://doi.org/10.1021/jo048385h
- Aidhen, I. S.; Ahuja, J. R. Tetrahedron Lett. 1992, 33, 5431 https://doi.org/10.1016/S0040-4039(00)79113-1
- Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling, U. H.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461
- Andres, J. M.; Pedrosa, R.; Perez- Encabo, A. Tetrahedron 2000, 56, 1217 https://doi.org/10.1016/S0040-4020(99)01070-4
- Iseki, K.; Asada, D.; Kuroki, Y. J. Fluorine Chem. 1999, 97, 85 https://doi.org/10.1016/S0022-1139(99)00033-0
- Shimizu, T.; Osako, K.; Nakata, T. Tetrahedron Lett. 1997, 38, 2685 https://doi.org/10.1016/S0040-4039(97)00429-2
- Davis, F. A.; Kasu, P. V. N. Tetrahedron Lett. 1998, 39, 6135 https://doi.org/10.1016/S0040-4039(98)01296-9
- Lee, J. I.; Park, H. Bull. Korean Chem. Soc. 2001, 22, 421
- Lee, J. I.; Park, H. Bull. Korean Chem. Soc. 2002, 23, 521 https://doi.org/10.5012/bkcs.2002.23.3.521
Cited by
- Polyelectrolyte complexes of chitosan self-assembled with fucoidan: An optimum condition to prepare their nanoparticles and their characteristics vol.31, pp.4, 2014, https://doi.org/10.1007/s11814-013-0243-0
- A Novel Synthesis of N-Methoxy-N-methylamides from 4,6-Pyrimidyl Urethane and Grignard Reagents vol.28, pp.4, 2005, https://doi.org/10.5012/bkcs.2007.28.4.695
- Synthesis and Versatile Utilization of 2‐PYRIDYL and PYRIMIDYL‐RELATED Reagents vol.41, pp.7, 2005, https://doi.org/10.1002/bkcs.12061
- Novel curcumin-loaded chitosan-polyelectrolyte complexed nanoparticles and their characteristics vol.38, pp.2, 2005, https://doi.org/10.1007/s11814-020-0740-x
- Synthetic Approaches to N ‐METHOXY‐ N ‐methylamides vol.42, pp.7, 2005, https://doi.org/10.1002/bkcs.12295