DOI QR코드

DOI QR Code

Hologram Quantitative Structure Activity Relationship (HQSAR) Study of Mutagen X

  • Cho, Seung-Joo (Life Science Division, Korea Institute of Science and Technology)
  • Published : 2005.01.20

Abstract

MX and its analogs are synthesized and modeled by quantitative structure activity relationship (QSAR) study including comparative molecular field analysis (CoMFA). As a result, factors affecting this class of compounds have been found to be steric and electrostatic effects. Because hologram quantitative structure activity relationship (HQSAR) technique is based on the 2-dimensional descriptors, this is free of ambiguity of conformational selection and molecular alignment. In this study we tried to include all the data available from the literature, and modeled with the HQSAR technique. Among the parameters affecting fragmentation, connectivity was the most important one for the whole compounds, giving good statistics. Considering additional parameters such as bond specification only slightly improved the model. Therefore connectivity has been found to be the most appropriate to explain the mutagenicity for this class of compounds.

Keywords

References

  1. Moudgal, C. J.; Lipscomb, J. C.; Bruce, R. M. Toxicology 2000, 147, 109-131 https://doi.org/10.1016/S0300-483X(00)00188-8
  2. Junhe, L.; Huixian, Z.; Chengyong, Y.; Zirui, Y.; Jinqi, Z. Wat. Res. 2002, 36, 970-974 https://doi.org/10.1016/S0043-1354(01)00290-1
  3. Meier, J. R.; Blazak, W. F.; Knohl, R. B. Environ. Mol. Mut. 1987, 10, 411-424 https://doi.org/10.1002/em.2850100410
  4. Halonen, I.; Tarhanen, J.; Ollikainen, S.; Ruokojarvi, P.; Tuppurainen, K.; Ruuskanen, J. Chemosphere 1994, 28, 2129-2138 https://doi.org/10.1016/0045-6535(94)90181-3
  5. Maron, D. M.; Ames, B. N. Mut. Res. 1983, 113, 173-215 https://doi.org/10.1016/0165-1161(83)90010-9
  6. Tikkanen, L.; Kronberg, L. Mut. Res. 1990, 240, 109-116 https://doi.org/10.1016/0165-1218(90)90014-S
  7. Kronberg, L.; Franzen, R. Environ. Sci. Technol. 1993, 27, 1811- 1818 https://doi.org/10.1021/es00046a008
  8. Matsumura, H.; Watanabe, M.; Matsumoto, K.; Ohta, T. J. Tox. Environ. Health 1994, 43, 65-72 https://doi.org/10.1080/15287399409531904
  9. LaLonde, R. T.; Xie, S.; Chamulitrat, W.; Mason, R. P. Chem. Res. Toxicol. 1994, 7, 482-486 https://doi.org/10.1021/tx00040a002
  10. Munter, T.; Curieux, F. L.; Sjoholm, R.; Kronberg, L. Chem. Res. Toxicol. 1998, 11, 226-233 https://doi.org/10.1021/tx970195x
  11. Miettinen, I.; Martikinen, P.; Vartiainen, T.; Lotjonen, S. Chemosphere 1993, 27, 1707-1718 https://doi.org/10.1016/0045-6535(93)90151-T
  12. Munter, T.; Curieux, F. L.; Sjoholm, R.; Kronberg, L. Chem. Res. Toxicol. 1999, 12, 40-52
  13. Munter, T.; Curieux, F. L.; Sjoholm, R.; Kronberg, L. Chem. Res. Toxicol. 1998, 11, 226-233 https://doi.org/10.1021/tx970195x
  14. Meier, J. R.; Monarca, S.; Patterson, K. S.; Villarini, M.; Daniel, F. B.; Moretti, M.; Pasquini, R. Toxicology 1996, 110, 59-70 https://doi.org/10.1016/0300-483X(96)03336-7
  15. Marsteinstredet, U.; Wiger, R.; Brunborg, G.; Homgslo, J. K.; Holme, J. A. Chemico-Biological Interactions 1997, 106, 89-107 https://doi.org/10.1016/S0009-2797(97)00053-7
  16. Mowry, D. T. J. Am. Chem. Soc. 1950, 72, 2535-2537 https://doi.org/10.1021/ja01162a056
  17. Nawrocki, J.; Andrzejewski, P.; Zelen, H.; Wasowicz, E. Wat. Res. 2001, 35, 1891-1896 https://doi.org/10.1016/S0043-1354(00)00456-5
  18. Marsteinstredet, U.; Brunborg, G.; Bjoras, M.; Soderlund, E.; Seeberg, E.; Kronberg, L.; Holme, J. A. Mut. Res. 1997, 390, 171- 178 https://doi.org/10.1016/S0165-1218(97)00016-5
  19. Tikkanen, L.; Kronberg, L. Mut. Res. 1990, 240, 109-116 https://doi.org/10.1016/0165-1218(90)90014-S
  20. M.T.Hyttinen, J.; Myohanen, S.; Jansson, K. Carcinogenesis 1996, 17, 1179-1181 https://doi.org/10.1093/carcin/17.5.1179
  21. Kronberg, L.; Franzen, R. Environ. Sci. Technol. 1993, 27, 1811-1818 https://doi.org/10.1021/es00046a008
  22. Franzen, R.; Goto, S.; Tanabe, K.; Morita, M. Mut. Res. 1998, 417, 31-37 https://doi.org/10.1016/S1383-5718(98)00092-8
  23. Ishiguro, Y.; LaLonde, T.; Dence, C. W. Environ. Tox. Chem. 1987, 6, 935-946 https://doi.org/10.1897/1552-8618(1987)6[935:MOCFAT]2.0.CO;2
  24. Ishiguro, Y.; Santodonato, J.; Neal, M. W. Environ. Mol. Mutagenesis 1988, 11, 225-234 https://doi.org/10.1002/em.2850110208
  25. LaLonde, R. T.; Bu, L.; Henwood, A.; Fiumano, J.; Zhang, L. Chem. Res. Toxicol. 1997, 10, 1427-1436 https://doi.org/10.1021/tx9701283
  26. LaLonde, R. T.; Cook, G. P.; Perakyla, H.; Bu, L. Chem. Res. Toxicol. 1991, 4, 540-545 https://doi.org/10.1021/tx00023a009
  27. LaLonde, R. T.; Xie, S. Chem. Res. Toxicol. 1992, 5, 618-624 https://doi.org/10.1021/tx00029a005
  28. Kronberg, L.; Christman, R. F. Sci. Total Environ. 1989, 81, 219- 230 https://doi.org/10.1016/0048-9697(89)90128-9
  29. Kronberg, L.; Christman, R. F.; Singh, R.; Ball, L. M. Environ. Sci. Technol. 1991, 25, 99-104 https://doi.org/10.1021/es00013a009
  30. LaLonde, R. T.; Xie, S.; Bu, L. Environ. Mol. Mut. 1993, 22, 181- 187 https://doi.org/10.1002/em.2850220311
  31. LaLonde, R. T.; Cook, G. P.; Perakyla, H.; Dence, C. W. Chem. Res. Toxicol. 1991, 4, 35-40 https://doi.org/10.1021/tx00019a005
  32. Meier, J. R.; Knohl, R. B.; Coleman, W. E.; Ringhand, H. P.; Munch, J. W.; Kaylor, W. H.; Stereicher, R. P.; Kopfler, F. C. Mut. Res. 1987, 189, 363-373 https://doi.org/10.1016/0165-1218(87)90044-9
  33. LaLonde, R. T.; Lee, H. R. Chem. Res. Toxicol. 1994, 7, 779-783 https://doi.org/10.1021/tx00042a010
  34. LaLonde, R. T.; Cook, G. P.; Perakyla, H.; Dence, C. W.; Babish, J. G. Environ. Mol. Mut. 1991, 17, 40-48 https://doi.org/10.1002/em.2850170107
  35. Cho, S. J. Bull. Korean Chem. Soc. 2002, 23, 929-930 https://doi.org/10.5012/bkcs.2002.23.7.929
  36. Cho, S. J. Bull. Korean Chem. Soc. 2003, 24, 731-732 https://doi.org/10.5012/bkcs.2003.24.6.731
  37. Tuppurainen, K.; Lotjonen, S.; Laatikainen, R.; Varitiainen, T. Mut. Res. 1992, 181-188
  38. Kronberg, L; Christman, R. F. Sci. Total. Environ. 1989, 81, 219 https://doi.org/10.1016/0048-9697(89)90128-9
  39. Poso, A.; Tuppurainen, K.; Gynther, J. J. Mol. Struct. (THEOCHEM) 1994, 304, 255-260 https://doi.org/10.1016/0166-1280(94)80022-7
  40. Cramer, R. D.; Petterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959-5967 https://doi.org/10.1021/ja00226a005
  41. Klebe, G.; Abraham, U. J. Comput.-Aided Mol. Design 1999, 13, 1-10 https://doi.org/10.1023/A:1008047919606
  42. J. Comput.-Aided Mol. Design v.13 Klebe, G.; Abraham, U. https://doi.org/10.1023/A:1008047919606

Cited by

  1. Global and local chemical reactivities of mutagen X and simple derivatives vol.19, pp.6, 2013, https://doi.org/10.1007/s00894-013-1799-7
  2. 3D-QSAR Studies on Angiotensin-Converting Enzyme (ACE)Inhibitors: a Molecular Design in Hypertensive Agents vol.26, pp.6, 2005, https://doi.org/10.5012/bkcs.2005.26.6.952
  3. HQSAR Study of Microsomal Prostaglandin E2 Synthase (mPGES-1) Inhibitors vol.27, pp.10, 2005, https://doi.org/10.5012/bkcs.2006.27.10.1531
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450