DOI QR코드

DOI QR Code

Photoinduced Superhydrophilicity in TiO2 Thin Films Modified with WO3

  • Hwang, Young-Kyu (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Patil, Kashinath Rangu (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Kim, Hye-Kyung (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Dattatraya Sathaye, Shivaram (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Hwang, Jin-Soo (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Park, Sang-Eon (Department of Chemistry, Inha University) ;
  • Chang, Jong-San (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology)
  • Published : 2005.10.20

Abstract

Tungsten oxide-modified TiO2 thin films were formed on a glass substrate by sol-gel and dip coating processes using acetyl acetone as a chelating agent. The hydrophilic properties of the thin films were investigated with illumination of UV light. The dependence of water contact angle on material composition and morphology of the film is established with SEM image and AFM profile. The surface morphology was controlled with the change of precursor concentration. 0.01 M of tungsten oxide-modified Ti$O_2$ have shown the highest hydrophilicity after UV-irradiation. The effect of composition on photoinduced hydrophilicity of the W$O_3$-Ti$O_2$ films was also investigated. The films were characterized by XRD, SEM, AFM and XPS.

Keywords

References

  1. Kannedy, J. C.; Datye, A. K. J. Catal. 1988, 179, 375 https://doi.org/10.1006/jcat.1998.2242
  2. Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341 https://doi.org/10.1021/cr00017a016
  3. Pae, Y. I.; Bae, M. H.; Park, W. C.; Sohn, J. R. Bull. Korean Chem. Soc. 2004, 25, 1881 https://doi.org/10.5012/bkcs.2004.25.12.1881
  4. Jung, K.-H.; Jang, S.-L.; Vittal, R.; Kim, D.; Kim, K.-J. Bull. Korean Chem. Soc. 2003, 24, 1501 https://doi.org/10.5012/bkcs.2003.24.10.1501
  5. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 431 https://doi.org/10.1038/41233
  6. Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. B 2001, 105, 3023 https://doi.org/10.1021/jp003212r
  7. Fujishima, A.; Rao, T. N.; Tayk, D. A. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1 https://doi.org/10.1016/S1389-5567(00)00002-2
  8. Wang, R.; Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. B 1999, 103, 2188 https://doi.org/10.1021/jp983386x
  9. Anderson, C.; Bard, A. J. J. Phys. Chem. 1995, 99, 9882 https://doi.org/10.1021/j100024a033
  10. Rosenberg, I.; Brock, J. R.; Heller, A. J. Phys. Chem. 1992, 96, 7146
  11. Miller, L. W.; Tejedor, M. I.; Anderson, M. A. Environ. Sci. Technol. 1999, 33, 2075
  12. Mills, A.; Hunte, S. L. Photochem. J. Photobiol. A: Chem. 1997, 108, 1 https://doi.org/10.1016/S1010-6030(97)00118-4
  13. Takeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H. J. Phys. Chem. 1995, 99, 9986 https://doi.org/10.1021/j100024a047
  14. $TiO_2$ Photocatalysis and Applications; Fujishima, A.; Hashimoto, K.; Watanabe, T.; BKC Inc.: Tokyo, Japan, 1999
  15. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Adv. Mater. 1998, 10, 135 https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
  16. Wang, R.; Hashimota, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Shimohigoshi, A.; Watanabe, T. Adv. Mater. 1998, 10, 135 https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
  17. Sakai, N.; Wang, R.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Langmuir 1998, 14, 5918 https://doi.org/10.1021/la980623e
  18. Wang, R.; Saka, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. B 1999, 103, 2188 https://doi.org/10.1021/jp983386x
  19. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Chem. Mater. 2002, 14, 2812 https://doi.org/10.1021/cm020076p
  20. Nakamura, R.; Ueda, K.; Sato, S. Langmuir 2001, 17, 2298 https://doi.org/10.1021/la0016118
  21. Serpone, N.; Borgarello, E.; Gratzel, M. J. Chem. Soc. Chem. Commun. 1984, 342
  22. Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H. J. Photochem. Photobiol. A 1995, 85, 247 https://doi.org/10.1016/1010-6030(94)03906-B
  23. Bedja, I.; Kamat, P. V. J. Phys. Chem. 1995, 99, 9182 https://doi.org/10.1021/j100022a035
  24. Hattori, A.; Tokihisa, Y.; Tada, H.; Ito, S. J. Electrochem. Soc. 2000, 147, 2279 https://doi.org/10.1149/1.1393521
  25. Tada, H.; Hattori, A.; Tokihisa, Y.; Imal, K.; Tohge, N.; Ito, S. J. Phys. Chem. B 2000, 104, 4585 https://doi.org/10.1021/jp000049r
  26. Cao, Y.; Zhang, X.; Yang, W.; Du, H.; Bai, Y.; Lu, T.; Yao, J. Chem. Mater. 2000, 12, 3445 https://doi.org/10.1021/cm0004432
  27. Marci, G.; Augugliaro, V.; Lopez-Munoz, M. J.; Martin, C.; Palmisano, L.; Rives, V.; Schiavello, M.; Tilley, R. J. D.; Veneiza, A. M. J. Phys. Chem. B 2001, 105, 1026 https://doi.org/10.1021/jp003172r
  28. Do, Y. R.; Lee, W.; Dwight, K.; Wold, A. J. Solid State Chem. 1994, 108, 198 https://doi.org/10.1006/jssc.1994.1031
  29. Martin, C.; Solana, G.; Rives, V.; Marci, G.; Palmisano, L.; Sclafami, A. J. Chem. Soc. Faraday Trans. 1996, 92, 819 https://doi.org/10.1039/ft9969200819
  30. Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Chung, W. J.; Lee, W. I. J. Catal. 2000, 19, 192
  31. Shiyanovskaya, J.; Hepel, M. J. Electrochem. Soc. 1999, 146, 243 https://doi.org/10.1149/1.1391593
  32. He, Y.; Wu, Z.; Fu, L.; Li, C.; Miao, Y.; Cao, L.; Fan, H.; Zou, B. Chem. Mater. 2003, 15, 4039 https://doi.org/10.1021/cm034116g
  33. Miyauchi, M.; Nakajima, A.; Hashimoto, K.; Watanabe, T. Adv. Mater. 2000, 12, 1923 https://doi.org/10.1002/1521-4095(200012)12:24<1923::AID-ADMA1923>3.0.CO;2-#
  34. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Chem. Mater. 2002, 14, 4714 https://doi.org/10.1021/cm020355c
  35. Sun, R. D.; Nakajima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. B 2001, 105, 1984 https://doi.org/10.1021/jp002525j
  36. Su, W.-B.; Wang, J.-P.; Chen, H.-C.; Wang, W.-X.; Zang, G.-Z.; Li, C.-P. Mater. Sci. Eng. 2003, B99, 461
  37. Rampaul, A.; Parkin, I. P.; O'Neill, S. A.; DeSouza, J.; Mills, A.; Elliott, N. Polyhedron 2003, 22, 35 https://doi.org/10.1016/S0277-5387(02)01333-5
  38. Machida, M.; Norimoto, K.; Watanabe, T.; Hashimoto, K.; Fujishima, K. J. Mater. Sci. 1999, 34, 2569 https://doi.org/10.1023/A:1004644514653
  39. Stathatos, A. L. E.; Lianos, G. P.; DelMonte, J. T. F.; Tsiourvas, Jr. D. Langmuir 1997, 13, 4295 https://doi.org/10.1021/la9701642
  40. Stathatos, E.; Lianos, P. Langmuir 2000, 16, 2398 https://doi.org/10.1021/la981783t
  41. Yu, J. C.; Yu, J.; Ho, W.; Zhao, J. J. Photochem. Photobio. A: Chemistry 2002, 148, 331 https://doi.org/10.1016/S1010-6030(02)00060-6
  42. Washiz, E.; Yamamoto, A.; Abe, Y.; Kawamura, M.; Sasaki, K. Solid State Ionics 2003, 165, 175 https://doi.org/10.1016/j.ssi.2003.08.030
  43. Rampaul, A.; Parkin, I. P.; O'neill, S. A.; Desouza, J.; Mills, A.; Elliott, N. Polyhedron 2003, 22, 35 https://doi.org/10.1016/S0277-5387(02)01333-5
  44. Chang, Y. L. L.; Seoger, M. G.; Philips, B. S. Less Common Maters 1967, 12, 53
  45. Miyauchi, M.; Nakajima, A.; Hashimoto, K.; Watanabe, T. Adv. Mater. 2000, 12, 1923 https://doi.org/10.1002/1521-4095(200012)12:24<1923::AID-ADMA1923>3.0.CO;2-#
  46. Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. J. Catal. 2000, 191, 192 https://doi.org/10.1006/jcat.1999.2776
  47. Deb, S. K. Philos. Mag. 1973, 27, 801 https://doi.org/10.1080/14786437308227562
  48. NaKamura, A.; Yamada, S. Appl. Phys. 1981, 241, 55
  49. Shigeralo, Y. Jap. J. Appl. Phys. 1991, 30, 1457 https://doi.org/10.1143/JJAP.30.1457
  50. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1 https://doi.org/10.1016/S1389-5567(00)00002-2
  51. Li, X. Z.; Li, F. B.; Yang, C. L.; Ge, W. K. J. Photochem. Photobiol. A Chemistry 2001, 141, 209 https://doi.org/10.1016/S1010-6030(01)00446-4
  52. Martin, C.; Solana, G.; Rives, V.; Marci, L.; Palmisano, L.; Sclafami, A. J. Chem. Soc. Farady Trans. 1996, 92, 819 https://doi.org/10.1039/ft9969200819

Cited by

  1. Photo-induced hydrophilicity and self-cleaning: models and reality vol.5, pp.6, 2012, https://doi.org/10.1039/c2ee03390a
  2. Microwave-assisted synthesis of Pt-WC/TiO2 in ionic liquid and its application for methanol oxidation vol.17, pp.9, 2013, https://doi.org/10.1007/s10008-013-2060-0
  3. Preparation and Characterization of Polyhedral Oligomeric Silsesquioxane-Containing, Titania-Thiol-Ene Composite Photocatalytic Coatings, Emphasizing the Hydrophobic–Hydrophilic Transition vol.7, pp.23, 2015, https://doi.org/10.1021/acsami.5b01488
  4. surface with superhydrophobicity and superoleophilicity for oil/water separation vol.7, pp.46, 2015, https://doi.org/10.1039/C5NR06425B
  5. Superlyophilic Interfaces and Their Applications vol.29, pp.45, 2017, https://doi.org/10.1002/adma.201703120
  6. Sol–gel doped TiO2 nanomaterials: a comparative study vol.51, pp.3, 2009, https://doi.org/10.1007/s10971-009-2017-z
  7. Humidity sensing properties of poly(o-anisidine)/WO3 composites vol.128, pp.2, 2008, https://doi.org/10.1016/j.snb.2007.06.026
  8. Change in Water Contact Angle of Carbon Contaminated TiO2 Surfaces by High-energy Electron Beam vol.30, pp.5, 2005, https://doi.org/10.5012/bkcs.2009.30.5.1067
  9. Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility vol.31, pp.5, 2010, https://doi.org/10.5012/bkcs.2010.31.5.1275
  10. Photoinduced Hydrophilicity of Surfaces of Thin Films vol.83, pp.1, 2005, https://doi.org/10.1134/s1061933x21010105