DOI QR코드

DOI QR Code

Immobile Artificial Metalloproteases

  • Published : 2005.12.20

Abstract

Effective artificial metalloproteases have been designed by using cross-linked polystyrene as the backbone. Artificial active sites comprising Cu(II) complexes as the catalytic site and other metal centers or organic functionalities as binding sites were synthesized. The activity of Cu(II) centers for peptide hydrolysis was greatly enhanced on attachment to polystyrene. By placing binding sites in proximity to the catalytic centers, the ability to hydrolyze a variety of protein substrates at selected cleavage sites was improved. Thus far, the most advanced immobile artificial proteases have been obtained by attaching the aldehyde group in proximity to the Cu(II) complex of cyclen.

Keywords

References

  1. Breslow, R. Acc. Chem. Res. 1995, 28, 146-153 https://doi.org/10.1021/ar00051a008
  2. Artificial Enzymes; Breslow, R., Ed.; Wiley: New York, 2005
  3. Lerner, R. A.; Benkovic, S. J.; Schultz, P. G. Science 1991, 252, 659-667 https://doi.org/10.1126/science.2024118
  4. Schultz, P. G.; Lerner, R. A. Acc. Chem. Res. 1993, 26, 391-395 https://doi.org/10.1021/ar00032a001
  5. Schultz, P. G.; Lerner, R. A. Science 1995, 269, 1835-1842 https://doi.org/10.1126/science.7569920
  6. Wentworth, P.; Janda, K. D. Cell Biochem. Biophys. 2001, 35, 63- 88 https://doi.org/10.1385/CBB:35:1:63
  7. Broo, K. S.; Nilsson, H.; Flodberg, A.; Baltzer, L. J. Am. Chem. Soc. 1998, 120, 4063-4068 https://doi.org/10.1021/ja9737580
  8. Baumeister, B.; Sakai, N.; Matile, S. Org. Lett. 2001, 3, 4229- 4232 https://doi.org/10.1021/ol016914n
  9. Klotz, I. M. In Enzyme Mechanisms; Page, M. I.; Williams, A., Eds.; Royal Society of Chemistry: London, 1987; pp14-34
  10. Suh, J. In Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC Press: Boca Raton, 1996; pp 8230-8237
  11. Hodge, P. Chem. Soc. Rev. 1997, 26, 417-424 https://doi.org/10.1039/cs9972600417
  12. Suh, J. In Advances in Supramolecular Chemistry; Gokel, G. W., Ed.; JAI Press: London, 2000; Vol. 6, pp 245-286
  13. Suh, J. Synlett 2001, 9, 1343-1363
  14. Suh, J. Acc. Chem. Res. 2003, 36, 562-570 https://doi.org/10.1021/ar020037j
  15. Klotz, I. M.; Suh, J. In Artificial Enzymes; Breslow, R., Ed.; Wiley: New York, 2005; Chap. 3
  16. Dugas, H. Bioorganic Chemistry, 3rd Ed.; Springer-Verlag: New York, 1996; p 3
  17. Suh, J.; Cho, Y.; Lee, K. J. J. Am. Chem. Soc. 1991, 113, 4198- 4202 https://doi.org/10.1021/ja00011a022
  18. Suh, J.; Lee, S. H.; Zoh, K. D. J. Am. Chem. Soc. 1992, 114, 7916- 7917 https://doi.org/10.1021/ja00046a050
  19. Suh, J.; Kim, N. J. Org. Chem. 1993, 58, 1284-1286 https://doi.org/10.1021/jo00057a053
  20. Kim, N.; Suh, J. J. Org. Chem. 1994, 59, 1561-1571 https://doi.org/10.1021/jo00085a050
  21. Suh, J.; Oh, S. Bioorg. Med. Chem. Lett. 1996, 6, 1067-1070 https://doi.org/10.1016/0960-894X(96)00172-2
  22. Suh, J.; Hah, S. S. J. Am. Chem. Soc. 1998, 120, 10088-10093 https://doi.org/10.1021/ja981379g
  23. Jang, B.-B.; Lee, K. P.; Min, D. H.; Suh, J. J. Am. Chem. Soc. 1998, 120, 12008-12016 https://doi.org/10.1021/ja981723+
  24. Suh, J.; Hong, S. H. J. Am. Chem. Soc. 1998, 120, 12545-12552 https://doi.org/10.1021/ja982705v
  25. Suh, J.; Moon, S. J. Bioorg. Med. Chem. Lett. 1998, 8, 2751- 2756 https://doi.org/10.1016/S0960-894X(98)00489-2
  26. Kim, S. M.; Hong, I. S.; Suh, J. Bioorg. Chem. 1998, 26, 51- 60 https://doi.org/10.1006/bioo.1998.1088
  27. Suh, J.; Kwon, W. J. Bioorg. Chem. 1998, 26, 103-117 https://doi.org/10.1006/bioo.1998.1090
  28. Moon, S.-J.; Jeon, J. W.; Kim, H.; Suh, M. P.; Suh, J. J. Am. Chem. Soc. 2000, 122, 7742-7749 https://doi.org/10.1021/ja000827t
  29. Suh, J.; Oh, S. J. Org. Chem. 2000, 65, 7534-7540 https://doi.org/10.1021/jo000896q
  30. Suh, J.; Moon, S.-J. Inorg. Chem. 2001, 40, 4890-4895 https://doi.org/10.1021/ic001165b
  31. Oh, S.; Chang, W.; Suh, J. Bioorg. Med. Chem. Lett. 2001, 11, 1469-1482 https://doi.org/10.1016/S0960-894X(01)00261-X
  32. Jeung, C. S.; Kim, C. H.; Min, K.; Suh, S. W.; Suh, J. Bioorg. Med. Chem. Lett. 2001, 11, 2401-2404 https://doi.org/10.1016/S0960-894X(01)00439-5
  33. Jeung, C. S.; Song, J. B.; Kim, Y. H.; Suh, J. Bioorg. Med. Chem. Lett. 2001, 11, 3061-3064 https://doi.org/10.1016/S0960-894X(01)00615-1
  34. Kim, H.; Paik, H.; Kim, M.-S.; Chung, Y.-S.; Suh, J. Bioorg. Med. Chem. Lett. 2002, 12, 2557-2560 https://doi.org/10.1016/S0960-894X(02)00484-5
  35. Kim, H.; Chung, Y.-S.; Paik, H.; Kim, M.-s.; Suh, J. Bioorg. Med. Chem. Lett. 2002, 12, 2663-2666 https://doi.org/10.1016/S0960-894X(02)00567-X
  36. Kim, H.; Kim, M.-s.; Paik, H.; Chung, Y.-S.; Hong, I. S.; Suh, J. Bioorg. Med. Chem. Lett. 2002, 12, 3247-3250 https://doi.org/10.1016/S0960-894X(02)00724-2
  37. Yoo, C. E.; Chae, P. S.; Kim, J. E.; Jeong, E. J.; Suh, J. J. Am. Chem. Soc. 2003, 125, 14580-14589 https://doi.org/10.1021/ja034730t
  38. Yoo, S. H.; Lee, B. J.; Kim, H.; Suh, J. J. Am. Chem. Soc. 2005, 127, 9593-9602 https://doi.org/10.1021/ja052191h
  39. Radzicka, A.; Wolfenden, R. J. Am. Chem. Soc. 1996, 118, 6105- 6109 https://doi.org/10.1021/ja954077c
  40. Bryant, R. A. R.; Hansen, D. A. J. Am. Chem. Soc. 1998, 120, 8910-8913 https://doi.org/10.1021/ja9804565
  41. Sutton, P. A.; Buckingham, D. A. Acc. Chem. Res. 1987, 20, 357- 364 https://doi.org/10.1021/ar00142a001
  42. Chin, J. Acc. Chem. Res. 1991, 24, 145-152 https://doi.org/10.1021/ar00005a004
  43. Suh, J. Acc. Chem. Res. 1992, 25, 273-279 https://doi.org/10.1021/ar00019a001
  44. Suh, J. In Perspectives on Bioinorganic Chemistry, Hay, R. W.; Dilworth, J. R.; Nolan, K. B., Eds.; JAI Press: London, 1996; Vol. 3, pp 115-149
  45. Suh, J.; Park, T. H.; Hwang, B. K. J. Am. Chem. Soc. 1992, 114, 5141-5146 https://doi.org/10.1021/ja00039a027
  46. Rana, T. M.; Meares, C. F. Proc. Natl. Acad. Sci. USA 1991, 88, 10578-10582 https://doi.org/10.1073/pnas.88.23.10578
  47. Shepartz, A.; Cuenoud, B. J. Am. Chem. Soc. 1990, 112, 3247- 3249 https://doi.org/10.1021/ja00164a075
  48. Hoyer, D.; Cho, H.; Schultz, P. G. J. Am. Chem. Soc. 1990, 112, 32449-3250
  49. Gallagher, J.; Zelenko, O.; Walts, A. D.; Sigman, D. S. Biochemistry 1998, 37, 2096-2104 https://doi.org/10.1021/bi971565j
  50. Chin, J. Acc. Chem. Res. 1991, 24, 145-152 https://doi.org/10.1021/ar00005a004
  51. Chin, J.; Jubian, V.; Mrejen, K. J. Chem. Soc., Chem. Commun. 1990, 1326-1328
  52. Zhu, L.; Qin, L.; Parac, T. N.; Kostic, N. M. J. Am. Chem. Soc. 1994, 116, 5218-5224 https://doi.org/10.1021/ja00091a028
  53. Hegg, E. L.; Burstyn, J. N. J. Am. Chem. Soc. 1995, 117, 7015- 7016 https://doi.org/10.1021/ja00131a030
  54. Kaminskaia, N. V.; Johnson, T. W.; Kostic, N. M. J. Am. Chem. Soc. 1999, 121, 8663-8664 https://doi.org/10.1021/ja9840246
  55. Saha, M. K.; Bernal, I. J. Chem. Soc., Chem. Commun. 2003, 612- 613
  56. Milovic, N. M.; Badjic, J. D.; Kostic, N. M. J. Am. Chem. Soc. 2004, 126, 696-697 https://doi.org/10.1021/ja038404p
  57. Kasai, M.; Ravi, R. G.; Shealy, S. J.; Grant, K. B. Inorg. Chem. 2004, 43, 6130-6132 https://doi.org/10.1021/ic049433j
  58. Silverman, R. B. The Organic Chemistry of Drug Design and Drug Action; Academic: San Diego, 1992; pp 98-145
  59. Suh, J.; Cho, W.; Chung, S. J. Am. Chem. Soc. 1985, 107, 4530- 4535 https://doi.org/10.1021/ja00301a025
  60. Suh, J.; Hong, S. B.; Chung, S. J. Biol. Chem. 1986, 108, 7112- 7114
  61. Tahirov, T. H.; Oki, H.; Tsukihara, T.; Ogasahara, K.; Yutani, K.; Ogata, K.; Izu, Y.; Tsunasawa, S.; Kato, K. J. Mol. Biol. 1998, 284, 101-124 https://doi.org/10.1006/jmbi.1998.2146
  62. Paul-Soto, R.; Bauer, R.; Frére, J.-M.; Galleni, M.; Meyer-Klaucke, W.; Nolting, H.; Rossolini, G. M.; de Seny, D.; Hernandez- Valladares, M.; Zeppezauer, M.; Adolph, H.-W. J. Biol. Chem. 1999, 274, 13242-13249 https://doi.org/10.1074/jbc.274.19.13242
  63. Mock, W. L.; Liu, Y. J. Biol. Chem. 1995, 270, 18437-18446 https://doi.org/10.1074/jbc.270.31.18437
  64. Lippard, S. J. Science 1995, 268, 996-997 https://doi.org/10.1126/science.7754394
  65. Carvajal, N.; López, V.; Salas, M.; Uribe, E.; Herrera, P.; Cerpa, J. Biochem. Biophys. Res. Comm. 1999, 258, 808-811 https://doi.org/10.1006/bbrc.1999.0709
  66. Gao, C.; Lavey, B. J.; Lo, C.-H. L.; Datta, A.; Wentworth, Jr. P.; Janda, K. D. J. Am. Chem. Soc. 1998, 120, 2211-2217 https://doi.org/10.1021/ja9720220
  67. Polgar, L. Mechanisms of Protease Action; CRC Press: Boca Raton, 1989
  68. Kisselev, A. F.; Goldberg, A. L. Chem. Biol. 2001, 8, 739- 758 https://doi.org/10.1016/S1074-5521(01)00056-4
  69. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862 https://doi.org/10.1021/jo960057x
  70. Evans, S. V.; Brayer, G. D. J. Mol. Biol. 1990, 213, 885-897 https://doi.org/10.1016/S0022-2836(05)80270-0
  71. Ward, O. P. In Comprehensive Biotechnology; Moo-Young, M., Ed.; Pergamon: Oxford, 1985; Vol. 3, pp 789-818
  72. Tramper, J. In Applied Biocatalysis; Cabral, J. M. S.; Best, D.; Boross, L.; Tramper, J., Eds.; Harwood Academic Publishers: Chur, 1994; pp 1-46

Cited by

  1. Synthesis and Crystal Structure of the Hydrogen Bromide Salt of 1,4,7,10-Tetrakis(2-((4-methoxy)phenoxy) ethyl)-1,4,7,10-tetraazacyclododecane vol.05, pp.10, 2017, https://doi.org/10.4236/msce.2017.510001
  2. -Substituted Polyoxotungstate as Artificial Protease vol.20, pp.31, 2014, https://doi.org/10.1002/chem.201402683
  3. Synthesis and DNA-Cleavage Properties of Metal Complexes of 1,4,7,10-Tetraazacyclododecane (Cyclen) Functionalized with a Pendant Benzocrown Ether vol.4, pp.9, 2007, https://doi.org/10.1002/cbdv.200790176
  4. Arm effects of mononuclear armed cyclen copper complexes on DNA cleavage vol.33, pp.6, 2008, https://doi.org/10.1007/s11243-008-9108-5
  5. Immobilization cyclen copper (II) on merrifield resin: Efficient oxidative cleavage of plasmid DNA vol.111, pp.5, 2009, https://doi.org/10.1002/app.29266
  6. Immobile Artificial Metalloproteases vol.37, pp.10, 2005, https://doi.org/10.1002/chin.200610258