References
- Breslow, R. Acc. Chem. Res. 1995, 28, 146-153 https://doi.org/10.1021/ar00051a008
- Artificial Enzymes; Breslow, R., Ed.; Wiley: New York, 2005
- Lerner, R. A.; Benkovic, S. J.; Schultz, P. G. Science 1991, 252, 659-667 https://doi.org/10.1126/science.2024118
- Schultz, P. G.; Lerner, R. A. Acc. Chem. Res. 1993, 26, 391-395 https://doi.org/10.1021/ar00032a001
- Schultz, P. G.; Lerner, R. A. Science 1995, 269, 1835-1842 https://doi.org/10.1126/science.7569920
- Wentworth, P.; Janda, K. D. Cell Biochem. Biophys. 2001, 35, 63- 88 https://doi.org/10.1385/CBB:35:1:63
- Broo, K. S.; Nilsson, H.; Flodberg, A.; Baltzer, L. J. Am. Chem. Soc. 1998, 120, 4063-4068 https://doi.org/10.1021/ja9737580
- Baumeister, B.; Sakai, N.; Matile, S. Org. Lett. 2001, 3, 4229- 4232 https://doi.org/10.1021/ol016914n
- Klotz, I. M. In Enzyme Mechanisms; Page, M. I.; Williams, A., Eds.; Royal Society of Chemistry: London, 1987; pp14-34
- Suh, J. In Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC Press: Boca Raton, 1996; pp 8230-8237
- Hodge, P. Chem. Soc. Rev. 1997, 26, 417-424 https://doi.org/10.1039/cs9972600417
- Suh, J. In Advances in Supramolecular Chemistry; Gokel, G. W., Ed.; JAI Press: London, 2000; Vol. 6, pp 245-286
- Suh, J. Synlett 2001, 9, 1343-1363
- Suh, J. Acc. Chem. Res. 2003, 36, 562-570 https://doi.org/10.1021/ar020037j
- Klotz, I. M.; Suh, J. In Artificial Enzymes; Breslow, R., Ed.; Wiley: New York, 2005; Chap. 3
- Dugas, H. Bioorganic Chemistry, 3rd Ed.; Springer-Verlag: New York, 1996; p 3
- Suh, J.; Cho, Y.; Lee, K. J. J. Am. Chem. Soc. 1991, 113, 4198- 4202 https://doi.org/10.1021/ja00011a022
- Suh, J.; Lee, S. H.; Zoh, K. D. J. Am. Chem. Soc. 1992, 114, 7916- 7917 https://doi.org/10.1021/ja00046a050
- Suh, J.; Kim, N. J. Org. Chem. 1993, 58, 1284-1286 https://doi.org/10.1021/jo00057a053
- Kim, N.; Suh, J. J. Org. Chem. 1994, 59, 1561-1571 https://doi.org/10.1021/jo00085a050
- Suh, J.; Oh, S. Bioorg. Med. Chem. Lett. 1996, 6, 1067-1070 https://doi.org/10.1016/0960-894X(96)00172-2
- Suh, J.; Hah, S. S. J. Am. Chem. Soc. 1998, 120, 10088-10093 https://doi.org/10.1021/ja981379g
- Jang, B.-B.; Lee, K. P.; Min, D. H.; Suh, J. J. Am. Chem. Soc. 1998, 120, 12008-12016 https://doi.org/10.1021/ja981723+
- Suh, J.; Hong, S. H. J. Am. Chem. Soc. 1998, 120, 12545-12552 https://doi.org/10.1021/ja982705v
- Suh, J.; Moon, S. J. Bioorg. Med. Chem. Lett. 1998, 8, 2751- 2756 https://doi.org/10.1016/S0960-894X(98)00489-2
- Kim, S. M.; Hong, I. S.; Suh, J. Bioorg. Chem. 1998, 26, 51- 60 https://doi.org/10.1006/bioo.1998.1088
- Suh, J.; Kwon, W. J. Bioorg. Chem. 1998, 26, 103-117 https://doi.org/10.1006/bioo.1998.1090
- Moon, S.-J.; Jeon, J. W.; Kim, H.; Suh, M. P.; Suh, J. J. Am. Chem. Soc. 2000, 122, 7742-7749 https://doi.org/10.1021/ja000827t
- Suh, J.; Oh, S. J. Org. Chem. 2000, 65, 7534-7540 https://doi.org/10.1021/jo000896q
- Suh, J.; Moon, S.-J. Inorg. Chem. 2001, 40, 4890-4895 https://doi.org/10.1021/ic001165b
- Oh, S.; Chang, W.; Suh, J. Bioorg. Med. Chem. Lett. 2001, 11, 1469-1482 https://doi.org/10.1016/S0960-894X(01)00261-X
- Jeung, C. S.; Kim, C. H.; Min, K.; Suh, S. W.; Suh, J. Bioorg. Med. Chem. Lett. 2001, 11, 2401-2404 https://doi.org/10.1016/S0960-894X(01)00439-5
- Jeung, C. S.; Song, J. B.; Kim, Y. H.; Suh, J. Bioorg. Med. Chem. Lett. 2001, 11, 3061-3064 https://doi.org/10.1016/S0960-894X(01)00615-1
- Kim, H.; Paik, H.; Kim, M.-S.; Chung, Y.-S.; Suh, J. Bioorg. Med. Chem. Lett. 2002, 12, 2557-2560 https://doi.org/10.1016/S0960-894X(02)00484-5
- Kim, H.; Chung, Y.-S.; Paik, H.; Kim, M.-s.; Suh, J. Bioorg. Med. Chem. Lett. 2002, 12, 2663-2666 https://doi.org/10.1016/S0960-894X(02)00567-X
- Kim, H.; Kim, M.-s.; Paik, H.; Chung, Y.-S.; Hong, I. S.; Suh, J. Bioorg. Med. Chem. Lett. 2002, 12, 3247-3250 https://doi.org/10.1016/S0960-894X(02)00724-2
- Yoo, C. E.; Chae, P. S.; Kim, J. E.; Jeong, E. J.; Suh, J. J. Am. Chem. Soc. 2003, 125, 14580-14589 https://doi.org/10.1021/ja034730t
- Yoo, S. H.; Lee, B. J.; Kim, H.; Suh, J. J. Am. Chem. Soc. 2005, 127, 9593-9602 https://doi.org/10.1021/ja052191h
- Radzicka, A.; Wolfenden, R. J. Am. Chem. Soc. 1996, 118, 6105- 6109 https://doi.org/10.1021/ja954077c
- Bryant, R. A. R.; Hansen, D. A. J. Am. Chem. Soc. 1998, 120, 8910-8913 https://doi.org/10.1021/ja9804565
- Sutton, P. A.; Buckingham, D. A. Acc. Chem. Res. 1987, 20, 357- 364 https://doi.org/10.1021/ar00142a001
- Chin, J. Acc. Chem. Res. 1991, 24, 145-152 https://doi.org/10.1021/ar00005a004
- Suh, J. Acc. Chem. Res. 1992, 25, 273-279 https://doi.org/10.1021/ar00019a001
- Suh, J. In Perspectives on Bioinorganic Chemistry, Hay, R. W.; Dilworth, J. R.; Nolan, K. B., Eds.; JAI Press: London, 1996; Vol. 3, pp 115-149
- Suh, J.; Park, T. H.; Hwang, B. K. J. Am. Chem. Soc. 1992, 114, 5141-5146 https://doi.org/10.1021/ja00039a027
- Rana, T. M.; Meares, C. F. Proc. Natl. Acad. Sci. USA 1991, 88, 10578-10582 https://doi.org/10.1073/pnas.88.23.10578
- Shepartz, A.; Cuenoud, B. J. Am. Chem. Soc. 1990, 112, 3247- 3249 https://doi.org/10.1021/ja00164a075
- Hoyer, D.; Cho, H.; Schultz, P. G. J. Am. Chem. Soc. 1990, 112, 32449-3250
- Gallagher, J.; Zelenko, O.; Walts, A. D.; Sigman, D. S. Biochemistry 1998, 37, 2096-2104 https://doi.org/10.1021/bi971565j
- Chin, J. Acc. Chem. Res. 1991, 24, 145-152 https://doi.org/10.1021/ar00005a004
- Chin, J.; Jubian, V.; Mrejen, K. J. Chem. Soc., Chem. Commun. 1990, 1326-1328
- Zhu, L.; Qin, L.; Parac, T. N.; Kostic, N. M. J. Am. Chem. Soc. 1994, 116, 5218-5224 https://doi.org/10.1021/ja00091a028
- Hegg, E. L.; Burstyn, J. N. J. Am. Chem. Soc. 1995, 117, 7015- 7016 https://doi.org/10.1021/ja00131a030
- Kaminskaia, N. V.; Johnson, T. W.; Kostic, N. M. J. Am. Chem. Soc. 1999, 121, 8663-8664 https://doi.org/10.1021/ja9840246
- Saha, M. K.; Bernal, I. J. Chem. Soc., Chem. Commun. 2003, 612- 613
- Milovic, N. M.; Badjic, J. D.; Kostic, N. M. J. Am. Chem. Soc. 2004, 126, 696-697 https://doi.org/10.1021/ja038404p
- Kasai, M.; Ravi, R. G.; Shealy, S. J.; Grant, K. B. Inorg. Chem. 2004, 43, 6130-6132 https://doi.org/10.1021/ic049433j
- Silverman, R. B. The Organic Chemistry of Drug Design and Drug Action; Academic: San Diego, 1992; pp 98-145
- Suh, J.; Cho, W.; Chung, S. J. Am. Chem. Soc. 1985, 107, 4530- 4535 https://doi.org/10.1021/ja00301a025
- Suh, J.; Hong, S. B.; Chung, S. J. Biol. Chem. 1986, 108, 7112- 7114
- Tahirov, T. H.; Oki, H.; Tsukihara, T.; Ogasahara, K.; Yutani, K.; Ogata, K.; Izu, Y.; Tsunasawa, S.; Kato, K. J. Mol. Biol. 1998, 284, 101-124 https://doi.org/10.1006/jmbi.1998.2146
- Paul-Soto, R.; Bauer, R.; Frére, J.-M.; Galleni, M.; Meyer-Klaucke, W.; Nolting, H.; Rossolini, G. M.; de Seny, D.; Hernandez- Valladares, M.; Zeppezauer, M.; Adolph, H.-W. J. Biol. Chem. 1999, 274, 13242-13249 https://doi.org/10.1074/jbc.274.19.13242
- Mock, W. L.; Liu, Y. J. Biol. Chem. 1995, 270, 18437-18446 https://doi.org/10.1074/jbc.270.31.18437
- Lippard, S. J. Science 1995, 268, 996-997 https://doi.org/10.1126/science.7754394
- Carvajal, N.; López, V.; Salas, M.; Uribe, E.; Herrera, P.; Cerpa, J. Biochem. Biophys. Res. Comm. 1999, 258, 808-811 https://doi.org/10.1006/bbrc.1999.0709
- Gao, C.; Lavey, B. J.; Lo, C.-H. L.; Datta, A.; Wentworth, Jr. P.; Janda, K. D. J. Am. Chem. Soc. 1998, 120, 2211-2217 https://doi.org/10.1021/ja9720220
- Polgar, L. Mechanisms of Protease Action; CRC Press: Boca Raton, 1989
- Kisselev, A. F.; Goldberg, A. L. Chem. Biol. 2001, 8, 739- 758 https://doi.org/10.1016/S1074-5521(01)00056-4
- Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862 https://doi.org/10.1021/jo960057x
- Evans, S. V.; Brayer, G. D. J. Mol. Biol. 1990, 213, 885-897 https://doi.org/10.1016/S0022-2836(05)80270-0
- Ward, O. P. In Comprehensive Biotechnology; Moo-Young, M., Ed.; Pergamon: Oxford, 1985; Vol. 3, pp 789-818
- Tramper, J. In Applied Biocatalysis; Cabral, J. M. S.; Best, D.; Boross, L.; Tramper, J., Eds.; Harwood Academic Publishers: Chur, 1994; pp 1-46
Cited by
- Synthesis and Crystal Structure of the Hydrogen Bromide Salt of 1,4,7,10-Tetrakis(2-((4-methoxy)phenoxy) ethyl)-1,4,7,10-tetraazacyclododecane vol.05, pp.10, 2017, https://doi.org/10.4236/msce.2017.510001
- -Substituted Polyoxotungstate as Artificial Protease vol.20, pp.31, 2014, https://doi.org/10.1002/chem.201402683
- Synthesis and DNA-Cleavage Properties of Metal Complexes of 1,4,7,10-Tetraazacyclododecane (Cyclen) Functionalized with a Pendant Benzocrown Ether vol.4, pp.9, 2007, https://doi.org/10.1002/cbdv.200790176
- Arm effects of mononuclear armed cyclen copper complexes on DNA cleavage vol.33, pp.6, 2008, https://doi.org/10.1007/s11243-008-9108-5
- Immobilization cyclen copper (II) on merrifield resin: Efficient oxidative cleavage of plasmid DNA vol.111, pp.5, 2009, https://doi.org/10.1002/app.29266
- Immobile Artificial Metalloproteases vol.37, pp.10, 2005, https://doi.org/10.1002/chin.200610258