DOI QR코드

DOI QR Code

Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate

  • Published : 2005.11.20

Abstract

Solvolysis rates of isopropenyl chloroformate (3) in water, $D_2O$, $CH_3OD$ and in aqueous methanol, ethanol, 2,2,2-trifluoroethanol (TFE), acetone, 1,4-dioxane as well as TFE-ethanol at 10 ${^{\circ}C}$ are reported. Additional kinetic data for pure water, pure ethanol and 80%(w/w) 2,2,2-trifuoroethanol (T)-water (W) at various temperatures are also reported. These rates show the phenomena of maximum rates in specific solvents (30% (v/v) methanol-water and 20% (v/v) ethanol-water) and, variations in relative rates are small in aqueous alcohols. The kinetic data are analyzed in terms of GW correlations, steric effect, kinetic solvent isotope effects (KSIE), and a third order model based on general base catalysis (GBC). Solvolyses based on predominately stoichiometric solvation effect relative to medium solvation are proceeding in 3 and the results are remarkably similar to those for p-nitrobenzoyl chloride (4) in mechanism and reactivity.

Keywords

References

  1. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 53, 2700
  2. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Chorton, M., Ed.; Jai Press: Greenwich, CT, 1996; Vol 1, p 81
  3. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121 https://doi.org/10.1002/9780470171967.ch5
  4. Kyong, J. B.; Park, B.-C.; Kim, C.-B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051, and references therein https://doi.org/10.1021/jo005630y
  5. Ryu, Z. H.; Lim, G. T.; Bentley, T. W. Bull. Korean Chem. Soc. 2003, 24, 1293 https://doi.org/10.5012/bkcs.2003.24.9.1293
  6. Oh, Y. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem. Soc. 2002, 23, 1089 https://doi.org/10.5012/bkcs.2002.23.8.1089
  7. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 2002, 1283
  8. Ryu, Z. H.; Shin, S. H.; Lim, G. T.; Lee, J. P. Bull. Korean Chem. Soc. 2004, 25, 307 https://doi.org/10.5012/bkcs.2004.25.2.307
  9. Kevill, D. N.; Kim, C.-B. J. Org. Chem. 2005, 70, 1490 https://doi.org/10.1021/jo048103d
  10. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 1721
  11. Kevill, D. N.; D'Souza, M. J.; Ren, H. Can. J. Chem. 1998, 76, 751 https://doi.org/10.1139/cjc-76-6-751
  12. Kevill, D. N.; D'Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881 https://doi.org/10.1002/poc.569
  13. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Research(S) 1999, 150
  14. Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1979, 98, 7667
  15. Takeuchi, K.; Ohga, Y.; Ushino, T. Chem. Lett. 1996, 763
  16. Koo, I. S.; Yang, K.; An, S. K.; Lee, C.-K.; Lee, I. Bull. Korean Chem. Soc. 2000, 21, 1011
  17. Koo, I. S.; Yang, K.; An, S. K.; Lee, J. P.; Lee, I. Bull. Korean Chem. Soc. 2004, 25, 699 https://doi.org/10.5012/bkcs.2004.25.5.699
  18. Queen, A. Can. J. Chem. 1967, 45, 1619 https://doi.org/10.1139/v67-264
  19. Kyong, J. B.; Kim, Y.-G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662
  20. Bentley, T. W.; Jones, R. O. J. Chem. Perkin Trans. 2 1993, 2351
  21. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1994, 753
  22. Bentley, T. W.; Ebdon, D.; Llewellyn, G.; Abduljabor, M. H.; Miller, B.; Kevill, D. N. J. Chem. Soc. Dalton Trans. 1997, 3819
  23. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001, 14, 759 https://doi.org/10.1002/poc.425
  24. Koo, I. S.; Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc. Perkin Trans. 2 1998, 1179
  25. Laughton, P. M.; Robertson, R. E. Solute-Solvent Interaction; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; p 319
  26. Koo, I. S.; Lee, I.; Oh, J.; Yang, Y.; Bentley, T. W. J. Phys. Org. Chem. 1993, 6, 223 https://doi.org/10.1002/poc.610060405
  27. Song, B. C.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8470 https://doi.org/10.1021/ja00204a021
  28. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604 https://doi.org/10.1021/jo00004a048
  29. Ryu, Z. H.; Ju, C.-K.; Sung, D. D.; Sung, N. C.; Bentley, T. W. Bull. Korean Chem. Soc. 2002, 23, 123 https://doi.org/10.5012/bkcs.2002.23.1.123
  30. Sudder, P. H. Electron Flow in Organic Chemistry; John Wiley & Sons Inc.: 1992; Composite pKa Chart, p 261
  31. Kaspi, J.; Rappport, Z. Tetahedron Letters 1977, 23, 2035
  32. Guggenheim, E. A. Philos. Mag. 1926, 2, 538 https://doi.org/10.1080/14786442608564083

Cited by

  1. Extended Grunwald-Winstein Analysis - LFER Used to Gauge Solvent Effects in p-Nitrophenyl Chloroformate Solvolysis vol.9, pp.11, 2008, https://doi.org/10.3390/ijms9112231
  2. Grunwald-Winstein Analysis - Isopropyl Chloroformate Solvolysis Revisited vol.10, pp.3, 2009, https://doi.org/10.3390/ijms10030862
  3. Analysis of the Nucleophilic Solvation Effects in Isopropyl Chlorothioformate Solvolysis vol.11, pp.7, 2010, https://doi.org/10.3390/ijms11072597
  4. Detailed analysis for the solvolysis of isopropenyl chloroformate vol.2, pp.2, 2011, https://doi.org/10.5155/eurjchem.2.2.130-135.405
  5. A Study of Solvent Effects in the Solvolysis of Propargyl Chloroformate vol.2011, pp.2090-5157, 2011, https://doi.org/10.5402/2011/767141
  6. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160510601