DOI QR코드

DOI QR Code

Hybridization by an Electrical Force and Electrochemical Genome Detection Using an Indicator-free DNA on a Microelectrode-array DNA Chip

  • Choi, Yong-Sung (School of Electrical, Electronics and Information of Engineering, WonKwang University) ;
  • Lee, Kyung-Sup (Dept. of Electrical Eng., Dongshin University) ;
  • Park, Dae-Hee (School of Electrical, Electronics and Information of Engineering, WonKwang University)
  • Published : 2005.03.20

Abstract

This research aims to develop DNA chip array without an indicator. We fabricated microelectrode array by photolithography technology. Several DNA probes were immobilized on an electrode. Then, indicator-free target DNA was hybridized by an electrical force and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between DNA probe and mismatched DNA in an anodic peak. Immobilization of probe DNA and hybridization of target DNA could be confirmed by fluorescent. This indicator-free DNA chip microarray resulted in the sequence-specific detection of the target DNA quantitatively ranging from $10^{-18}\;M\;to\;10^{-5}$ M in the buffer solution. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

Keywords

References

  1. O'Donnell, M. J.; Tang, K.; Koster, H.; Smith, C. L.; Cantor, C. R. Anal. Chem. 1997, 69, 2438 https://doi.org/10.1021/ac961007v
  2. Southern, E. M.; Case-Green, S. C.; Elder, J. K.; Johnson, M.; Mir, K. U.; Wang, L.; Williams, J. C. Nucleic Acids Res. 1994, 22, 1368 https://doi.org/10.1093/nar/22.8.1368
  3. Pease, A. C.; Solas, D.; Sullivan, E. J.; Cronin, M. T.; Holmes, C. P.; Fodor, S. P. A. Proc. Natl. Acad. of Sci. U.S.A. 1994, 91, 5022
  4. Steel, A. B.; Herne, T. M.; Tarlov, M. J. Anal. Chem. 1998, 70, 4670 https://doi.org/10.1021/ac980037q
  5. Kim, D. J.; Oh, D. B.; Lee, S. M.; Choi, I. S.; Kim, Y. G. Bull. Korean Chem. Soc. 2004, 25, 1430 https://doi.org/10.5012/bkcs.2004.25.9.1430
  6. Choi, J. S.; Choi, Y. H.; Park, J. S. Bull. Korean Chem. Soc. 2004, 25, 1025 https://doi.org/10.5012/bkcs.2004.25.7.1025
  7. Schena, M.; Shalon, D.; Heller, R.; Chai, A.; Brown, P. O.; Davis, R. W. Proc. Natl. Acad. Sci. USA 1996, 93, 10614
  8. Schena, M.; Shalon, D.; Davis, R. W.; Brown, P. O. Science 1995, 270, 467 https://doi.org/10.1126/science.270.5235.467
  9. Choi, Y. S.; Kim, D. K.; Kwon, Y. S. KIEE Inter. Trans. on EA 2001, 11C, 23
  10. Kim, D. K.; Choi, Y. S.; Murakami, Y.; Tamiya, E.; Kwon, Y. S. KIEE Inter. Trans. on EA 2001, 11C, 85
  11. Johnston, D. H.; Glasgow, K. C.; Thorp, H. H. J. Am. Chem. Soc. 1995, 117, 8933 https://doi.org/10.1021/ja00140a006
  12. Pividori, M. I.; Merko, A.; Alegret, S. Biosens. Bioelectron. 2000, 15, 291 https://doi.org/10.1016/S0956-5663(00)00071-3
  13. Choi, Y. S.; Park, D. H.; Kwon, Y. S.; Tomoji, T. Trans. KIEE 2003, 52C, 365
  14. Cho, S. B.; Pak, J. J.; Hong, J. S.; Kimpak, Y. M. J. Korean Phys. Soc. 2002, 41, 1054
  15. Cho, S. B.; Hong, J. S.; Pak, Y. K.; Pak, J. J. J. Korean Phys. Soc. 2002, 40, 17
  16. Johnson, D. H.; Glasgow, K. C.; Thorp, H. H. J. Am. Chem. Soc. 1995, 117, 8933 https://doi.org/10.1021/ja00140a006
  17. Ropp, P. A.; Thorp, H. H. Chem. Biol. 1999, 6, 599 https://doi.org/10.1016/S1074-5521(99)80111-2
  18. Park, N. K.; Hahn, J. H. Anal. Chem. 2004, 76, 900 https://doi.org/10.1021/ac026368r
  19. Lee, B. S.; Lee, S. G. Bull. Korean Chem. Soc. 2004, 25, 1531 https://doi.org/10.5012/bkcs.2004.25.10.1531
  20. Kim, H. K.; Yang, C. H. Bull. Korean Chem. Soc. 2004, 25, 1769 https://doi.org/10.5012/bkcs.2004.25.12.1769

Cited by

  1. Nanoliter Reactor Arrays for Antibiotic Study vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1709
  2. Target label-free, reagentless electrochemical DNA biosensor based on sub-optimum displacement vol.75, pp.2, 2008, https://doi.org/10.1016/j.talanta.2007.11.035
  3. An investigation on FR4 as a based material for Ti/Au and Cu/Au evaporated fabrication for DNA biosensor application vol.1535, pp.None, 2020, https://doi.org/10.1088/1742-6596/1535/1/012037