DOI QR코드

DOI QR Code

Heterocyclic Nonlinear Optical Chromophores Composed of Phenothiazine or Carbazole Donor and 2-Cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran Acceptor

  • Cho, Min-Ju (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Ja-Youn (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Jae-Hong (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Lee, Seung-Hwan (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Dalton, Larry R. (Department of Chemistry, University of Washington) ;
  • Choi, Dong-Hoon (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
  • Published : 2005.01.20

Abstract

We prepared the new nonlinear optical chromophores that show fairly high microscopic nonlinearity through intramolecular charge transfer. Phenothiazine and carbazole units played an important role to contribute high electron donability and connect the resonance pathway via conjugative effect in the cyclized ring beside the aromatic ring. Theoretical calculation, electrochemical analysis, and absorption spectroscopic study gave us useful information about the energy states and microscopic nonlinearities of two serial chromophores. We compared the microscopic nonlinearities of four chromophores with the conjugation length and electron donability in the push-pull type NLO chromophores. The effect of gradient donability and lengthening the conjugation were investigated on the electronic state and microscopic nonlinearity.

Keywords

References

  1. Dalton, L. R.; Harper, A. W.; Ghosen, R.; Steier, W. H.; Ziari, M.; Fetterman, H.; Shi, Y.; Mustacich, R. V.; Jen, A. K.-Y.; Shea, K. J. Chem. Mater. 1995, 7, 1060 https://doi.org/10.1021/cm00054a006
  2. Dalton, L. R.; Harper, A. W.; Wu, B.; Ghosen, R.; Laquin-danum, J.; Liang, Z.; Hubble, A.; Xu, C. Adv. Mater. 1995, 7, 519 https://doi.org/10.1002/adma.19950070603
  3. Dalton, L. R.; Harper, A.; Ren, A.; Wang, F.; Todorova, G.; Chen, J.; Zhang, C.; Lee. M. Ind. Eng. Chem. Res. 1999, 38, 8 https://doi.org/10.1021/ie9705970
  4. Cho, B. R.; Kim, Y. H.; Son, K. W.; Khalil, C.; Kim, Y. H.; Jeon, S.-J. Bull. Korean Chem. Soc. 2002, 23(9), 1253 https://doi.org/10.5012/bkcs.2002.23.9.1253
  5. Kim, M. H.; Jin, J.-I.; Lee, C. J.; Kim, N.; Park, K. H. Bull. Korean Chem. Soc. 2002, 23(7), 964 https://doi.org/10.5012/bkcs.2002.23.7.964
  6. Lee, M.; Katz, H. E.; Erben, C.; Gill, D. M.; Gopalan, P.; Heber, J. D.; McGee, D. J. Science 2002, 298, 1401 https://doi.org/10.1126/science.1077446
  7. Shi, Y.; Zhang, C.; Zhang, H.; Betchel, J. H.; Dalton, J. R.; Robinson, B. H.; Steier, W. H. Science 2000, 288, 119 https://doi.org/10.1126/science.288.5463.119
  8. Samyn, C.; Verbiest, T.; Persoons, A. Macromol. Rapid Commun. 2000, 21, 1 https://doi.org/10.1002/(SICI)1521-3927(20000101)21:1<1::AID-MARC1>3.0.CO;2-X
  9. Kramer, C. S.; Zeitler, K.; Muller, T. J. J. Org. Lett. 2000, 2(20), 3723 https://doi.org/10.1021/ol0066328
  10. Dalton, L. R. Opt. Eng. 2000, 39, 589 https://doi.org/10.1117/1.602403
  11. He, M. Q.; Leslie, T. M.; Sinicropi, J. A. Chem. Mater. 2002, 14, 4662 https://doi.org/10.1021/cm020405d
  12. He, M. Q.; Leslie, T. M.; Sinicropi, J. A.; Garner, S. M.; Reed, L. D. Chem. Mater. 2002, 14, 4669 https://doi.org/10.1021/cm0204066
  13. Wu, X.; Wu, J.; Jen, A. K.-Y. J. Am. Chem. Soc. 1999, 121, 472 https://doi.org/10.1021/ja983537+
  14. Wang, F.; Ren, A. S.; He, M.; Harper, A. W.; Dalton, L. R.; Zhang, H.; Garner, S. M.; Chen, A.; Steier, W. H. Polym. Prepr. 1998, 39(2), 1065
  15. Robinson, B. H.; Dalton, L. R.; Harper, A. W.; Ren, A.; Wang, F.; Zhang, C.; Todorova, G.; Lee. M.; Aniszfeld, R.; Garner, S.; Chen, A.; Steier, W. H.; Houbrecht, S.; Persoons, A.; Ledoux, I.; Zyss, J.; Jen, A. K-Y. Chem. Phys. 1999, 245, 35 https://doi.org/10.1016/S0301-0104(99)00079-8
  16. Melikian, G.; Rouessac, F. P.; Alexandre, C. Synth. Comm. 1995, 25, 3045 https://doi.org/10.1080/00397919508011437

Cited by

  1. Syntheses and photophysical properties of new carbazole-based conjugated multi-branched molecules vol.15, pp.7, 2007, https://doi.org/10.1007/BF03218937
  2. Synthesis and characterization of Y-type polymers for second-order nonlinear optical applications vol.51, pp.4, 2013, https://doi.org/10.1002/pola.26439
  3. Phenothiazinyl Rhodanylidene Merocyanines for Dye-Sensitized Solar Cells vol.77, pp.8, 2012, https://doi.org/10.1021/jo202608w
  4. Preparation and properties of poly[9-hexadecyl-3-phenyl-6-(4-vinylphenyl)-9H-carbazole] vol.84, pp.7, 2014, https://doi.org/10.1134/S1070363214070111
  5. In-Depth Investigation of the Optical Effects in Rationally Designed Phenoxazine-Based Polyazomethines with Activated Quenched Fluorescence vol.121, pp.11, 2017, https://doi.org/10.1021/acs.jpcc.7b00566
  6. Synthesis of isomeric (E)-[4-(dimethylamino)phenyl]-vinylquinoxalines – precursors for a new class of nonlinear optical chromophores vol.53, pp.5, 2017, https://doi.org/10.1007/s10593-017-2084-y
  7. Synthesis, Electronic, and Electro-Optical Properties of Emissive Solvatochromic Phenothiazinyl Merocyanine Dyes vol.17, pp.36, 2011, https://doi.org/10.1002/chem.201100592
  8. Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications vol.20, pp.33, 2018, https://doi.org/10.1039/C8CP03780A
  9. Heterocyclic Nonlinear Optical Chromophores Composed of Phenothiazine or Carbazole Donor and 2-Cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran Acceptor vol.36, pp.23, 2005, https://doi.org/10.1002/chin.200523189
  10. Electroluminescence of Phenothiazine-Labeled Dendrimer Encapsulated 2-{2-[2-(4-Dimethylamino-phenyl)-vinyl]-6-methyl-pyran-4-ylidene}-Malononitrile Derivative: Effect of the Density of Phenothiazine Dendron vol.245-246, pp.1, 2006, https://doi.org/10.1002/masy.200651360
  11. Development in Synthesis, Electrochemistry, LB Moieties of Phenothiazine Based Units vol.19, pp.13, 2007, https://doi.org/10.1002/elan.200703866
  12. Synthesis and Electronic Properties of Monodisperse Oligophenothiazines vol.14, pp.8, 2008, https://doi.org/10.1002/chem.200701341
  13. Azure A chloride: computational and spectroscopic study vol.40, pp.2, 2009, https://doi.org/10.1002/jrs.2102
  14. Modular Synthesis and Electronic and Hole-Transport Properties of Monodisperse Oligophenothiazines vol.287, pp.1, 2010, https://doi.org/10.1002/masy.201050101
  15. Synthesis and Electronic Properties of 3-Acceptor-Substituted and 3,7-Bisacceptor-Substituted Phenothiazines vol.2006, pp.2, 2006, https://doi.org/10.1002/ejoc.200500539
  16. Electro-optic property of chromophore-terminated trifunctional dendrimer in a guest-host system vol.515, pp.4, 2006, https://doi.org/10.1016/j.tsf.2006.03.061
  17. Synthesis and Electro-Optic Properties of Novel T-Type Polyester with High Thermal Stability of Dipole Alignment vol.28, pp.2, 2005, https://doi.org/10.5012/bkcs.2007.28.2.329
  18. Synthesis, Photophysical and Electrochemical Properties of Novel Conjugated Donor-Acceptor Molecules Based on Phenothiazine and Benzimidazole vol.28, pp.8, 2005, https://doi.org/10.5012/bkcs.2007.28.8.1389
  19. Preparation of Novel Nonlinear Optical Polyester with Enhanced Thermal Stability of Dipole Alignment vol.28, pp.8, 2005, https://doi.org/10.5012/bkcs.2007.28.8.1433
  20. Electro-optic properties of novel heterocyclic gradient bridge chromophores in amorphous polycarbonate vol.29, pp.5, 2005, https://doi.org/10.1016/j.optmat.2005.11.021
  21. Preparation of Novel Y-Type Nonlinear Optical Polyimides with High Thermal Stability of Second Harmonic Generation vol.491, pp.1, 2005, https://doi.org/10.1080/15421400802330531
  22. Preparation and Nonlinear Optical Properties of Novel Polyesters with Enhanced Thermal Stability of Second Harmonic Generation vol.29, pp.1, 2005, https://doi.org/10.5012/bkcs.2008.29.1.181
  23. Preparation of Novel T-type Polyurethanes with High Thermal Stability of Second Harmonic Generation and Their Nonlinear Optical Properties vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.811
  24. Synthesis of Novel Y-type Nonlinear Optical Polyesters with Enhanced Thermal Stability of Dipole Alignment vol.29, pp.5, 2005, https://doi.org/10.5012/bkcs.2008.29.5.933
  25. Synthesis and Properties of Novel Y-type Nonlinear Optical Polyester Containing Cyanovinylthiophene with Enhanced Thermal Stability of Second Harmonic Generation vol.30, pp.3, 2005, https://doi.org/10.5012/bkcs.2009.30.3.661
  26. Synthesis and Nonlinear Optical Properties of Novel Polyester with 2,3-Dioxybenzylidenecyanoacetate vol.30, pp.3, 2005, https://doi.org/10.5012/bkcs.2009.30.3.731
  27. Quantitative Determination of the Chromophore Alignment Induced by Electrode Contact Poling in Self-Assembled NLO Materials vol.30, pp.4, 2005, https://doi.org/10.5012/bkcs.2009.30.4.882
  28. Preparation and Properties of A Novel Y-type Nonlinear Optical Polyester with Dioxybenzylidenecyanoacetate Groups vol.30, pp.5, 2009, https://doi.org/10.5012/bkcs.2009.30.5.1080
  29. Spectroscopic investigations of vinyl-substituted 10H-phenothiazine vol.83, pp.2, 2005, https://doi.org/10.1016/j.dyepig.2009.05.004
  30. Synthesis and property of solvatochromic fluorophore based on D-π-A molecular system: 2-{[3-Cyano-4-(N-ethyl-N-(2-hydroxyethyl)amino)styryl]-5,5-dimethylfuran-2(5H)-ylidene}malononitrile dye vol.75, pp.1, 2005, https://doi.org/10.1016/j.saa.2009.10.015
  31. D–π–A solvatochromic charge transfer dyes containing a 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran acceptor vol.84, pp.2, 2005, https://doi.org/10.1016/j.dyepig.2009.07.012
  32. Dual optical responses of phenothiazine derivatives: near-IR chromophore and water-soluble fluorescent organic nanoparticles vol.20, pp.39, 2005, https://doi.org/10.1039/c0jm01303j
  33. Synthesis, Characterization, Absorbance, Fluorescence and Non Linear Optical Properties of Some Donor Acceptor Chromophores vol.33, pp.6, 2005, https://doi.org/10.5012/bkcs.2012.33.6.1900
  34. Tuning of spacer groups in organic dyes for efficient inhibition of charge recombination in dye-sensitized solar cells vol.95, pp.1, 2012, https://doi.org/10.1016/j.dyepig.2012.04.002
  35. Synthesis, optical and electrochemical properties of carbazole sensitizers and their interaction with TiO2 vol.1060, pp.None, 2005, https://doi.org/10.1016/j.molstruc.2013.12.017
  36. Isomeric indolizine-based π-expanded push–pull NLO-chromophores: Synthesis and comparative study vol.1156, pp.None, 2005, https://doi.org/10.1016/j.molstruc.2017.11.077
  37. Synthesis of E,E-4-(6-(N-hydroxyethyl(N-ethyl)-aminostyrylquinoxalin-2-yl)vinyl)-2-dicyanomethylene-3-cyano-2,5-dihydrofurans vol.49, pp.24, 2005, https://doi.org/10.1080/00397911.2019.1676908
  38. Phenothiazine–rhodamine‐based colorimetric and fluorogenic ‘turn‐on' sensor for Zn2+ and bioimaging studies in live cells vol.35, pp.1, 2005, https://doi.org/10.1002/bio.3701
  39. Solvatochromic and pH Switch Properties of a D- $ \boldsymbol{\pi }$ -A Dye with benzo[b]thiophene as Donor Moiety vol.9, pp.2, 2005, https://doi.org/10.1142/s2251237321500027
  40. Design and Synthesis of Novel Phenothiazine‐Benzothiadiazine‐1,1‐dioxide Hybrid Organic Material for OLED Applications vol.6, pp.40, 2005, https://doi.org/10.1002/slct.202102781