References
- Kim, B.-E.; Lee, S.-H.; Park, K.-S.; Lee, K.-P. J. High Resol. Chromatogr. 1997, 208-212
- Maier, N. M.; Urey, G. J. Chromatogr. A 1996, 732, 215- 230 https://doi.org/10.1016/0021-9673(95)01189-7
- Wu, Y.-S.; Lee, H.-K.; Li, S. F. Y. J. Chromatogr. A 2001, 912, 171-179 https://doi.org/10.1016/S0021-9673(01)00559-3
- Lurie, I. S. J. Chromatogr. A 1997, 792, 297-307 https://doi.org/10.1016/S0021-9673(97)00700-0
- Schneiderman, E.; Stalcup, A. M. J. Chromatogr. B 2000, 745, 83- 102 https://doi.org/10.1016/S0378-4347(00)00057-8
- So, T. S. K.; Huie, C. W. J. Chromatogr. A 2000, 872, 269- 278 https://doi.org/10.1016/S0021-9673(99)01323-0
- Lee, K.-P.; Choi, S.-H.; Ryu, E.-N.; Ryoo, J.-J.; Park, J.-H.; Kim, Y.; Hyun, M. H. Anal. Sci. 2002, 18, 31-34 https://doi.org/10.2116/analsci.18.31
- Choi, S.-H.; Kim, S.-Y.; Ryoo, J.-J.; Lee, K.-P. J. Inc. Phenom., Macrocyc. Chem. 2001, 40, 139-146 https://doi.org/10.1023/A:1011175206514
- Choi, S.-H.; Seo, J.-H.; Nam, S.-I.; Lee, M.-S.; Lee, K.-P. J. Inc. Phenom., Macrocyc. Chem. 2001, 40, 279-283 https://doi.org/10.1023/A:1012728301383
- Choi, S.-H.; Ryu, E.-Y.; Ryoo, J.-J.; Lee, K.-P. J. Inc. Phenom., Macrocyc. Chem. 2001, 40, 271-274 https://doi.org/10.1023/A:1012703615268
- Fillet, M.; Crommen, P. H. J. J. Chromatogr. A 2000, 875, 123- 134 https://doi.org/10.1016/S0021-9673(00)00084-4
- Otsuka, K.; Terabe, S. J. Chromatogr. A 2000, 875, 163-178 https://doi.org/10.1016/S0021-9673(99)01167-X
- Lu, X.; Chen, Y. J. Chromatogr. A 2002, 955, 133-140 https://doi.org/10.1016/S0021-9673(02)00186-3
- Okafo, G. N.; Camilleri, P. J. Microcol. Sep. 1993, 5, 149 https://doi.org/10.1002/mcs.1220050210
- Henglein, A.; Meisel, D. Langmuir 1998, 14, 7392-7396 https://doi.org/10.1021/la981278w
- Cointet, C. D.; Khatouri, J.; Mostafavi, M.; Belloni, J. J. Phys. Chem. B 1997, 101, 3517-3522 https://doi.org/10.1021/jp963344d
- Fujita, H.; Izawa, M.; Yamazaki, H. Nature 1962, 196, 666- 667 https://doi.org/10.1038/196666a0
- Choi, S.-H.; Lee, S.-H.; Hwang, Y.-M.; Lee, K.-P. Radia. Phys. Chem. 2003, 67, 517-521 https://doi.org/10.1016/S0969-806X(03)00097-5
- Li, T.; Park, H.-G.; Lee, H.-S.; Choi, S.-H. Nanotechnology 2004, 15, S660-S663 https://doi.org/10.1088/0957-4484/15/10/026
- Choi, S.-H.; Park, H.-G. Appl. Surf. Sci. 2005, 243, 76-81 https://doi.org/10.1016/j.apsusc.2004.09.051
Cited by
- Preparation of Ag−PS and Ag−PSS particles by γ-irradiation and their antimicrobial efficiency againstStaphylococcus aureus ATCC 6538 andKlebsiella pneumonia ATCC 4352 vol.14, pp.2, 2006, https://doi.org/10.1007/BF03218508
- Radiolytic synthesis of Ag-loaded polystyrene (Ag-PS) nanoparticles and their antimicrobial efficiency againststaphylococcus aureus andklebsiella pneumoniase vol.15, pp.4, 2007, https://doi.org/10.1007/BF03218789
- Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector vol.182, pp.7-8, 2015, https://doi.org/10.1007/s00604-015-1449-0
- Review of aqueous chiral electrokinetic chromatography (EKC) with an emphasis on chiral microemulsion EKC vol.28, pp.15, 2007, https://doi.org/10.1002/elps.200600808
- Catalytic Methanolysis Induced by Succinoglycan, a Rhizobial Exopolysaccharide vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.921
- Resolution of Three Important π-Basic Chiral Compounds on Recently Developed Five π-Acidic Chiral Columns vol.28, pp.6, 2007, https://doi.org/10.5012/bkcs.2007.28.6.1042
- Enantiomeric Recognition and Separation by Chiral Nanoparticles vol.24, pp.6, 2005, https://doi.org/10.3390/molecules24061007