DOI QR코드

DOI QR Code

Chiral Separation of Arylalcohols by Capillary Electrophoresis Using Sulfonated β-Cyclodextrin and Ag Colloids as Additives

  • Choi, Seong-Ho (Department of Chemistry, Hannam University) ;
  • Noh, Hyen-Ju (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Graduate School, Kyungpook National University)
  • Published : 2005.10.20

Abstract

Chiral separation of arylalcohols such as 1-phenyl-1-propanol, 1-phenyl-2-propanol, and 2-phenyl-1-propanol by capillary electrophoresis was studied using sulfonated $\beta$-cyclodextrin (CD) as a chiral selector and Ag colloids as an additive. The optimum separation condition of arylalcohols was found to be the chiral selector concentration of 6.5 mM, applied voltage of 15 kV, and pH of 7.0. In order to improve chiral separation, an Ag colloid was mixed with a running buffer. The resolution in the Ag colloid-mixed running buffer was considerably superior to that obtained with the sulfonated $\beta$-CD alone. The molar ratio of sulfonated $\beta$-CD to Ag colloid, which is one of critical parameters affecting resolution, was found to be optimum at 65 : 1. In order to elucidate the resolution mechanism, an inclusion-complex of the arylalcohols with sulfonated $\beta$-CD was prepared by mixing and shaking in solution, and then characterized by cyclic voltammetry (CV). The inclusion mechanism was also discussed using experimental results.

Keywords

References

  1. Kim, B.-E.; Lee, S.-H.; Park, K.-S.; Lee, K.-P. J. High Resol. Chromatogr. 1997, 208-212
  2. Maier, N. M.; Urey, G. J. Chromatogr. A 1996, 732, 215- 230 https://doi.org/10.1016/0021-9673(95)01189-7
  3. Wu, Y.-S.; Lee, H.-K.; Li, S. F. Y. J. Chromatogr. A 2001, 912, 171-179 https://doi.org/10.1016/S0021-9673(01)00559-3
  4. Lurie, I. S. J. Chromatogr. A 1997, 792, 297-307 https://doi.org/10.1016/S0021-9673(97)00700-0
  5. Schneiderman, E.; Stalcup, A. M. J. Chromatogr. B 2000, 745, 83- 102 https://doi.org/10.1016/S0378-4347(00)00057-8
  6. So, T. S. K.; Huie, C. W. J. Chromatogr. A 2000, 872, 269- 278 https://doi.org/10.1016/S0021-9673(99)01323-0
  7. Lee, K.-P.; Choi, S.-H.; Ryu, E.-N.; Ryoo, J.-J.; Park, J.-H.; Kim, Y.; Hyun, M. H. Anal. Sci. 2002, 18, 31-34 https://doi.org/10.2116/analsci.18.31
  8. Choi, S.-H.; Kim, S.-Y.; Ryoo, J.-J.; Lee, K.-P. J. Inc. Phenom., Macrocyc. Chem. 2001, 40, 139-146 https://doi.org/10.1023/A:1011175206514
  9. Choi, S.-H.; Seo, J.-H.; Nam, S.-I.; Lee, M.-S.; Lee, K.-P. J. Inc. Phenom., Macrocyc. Chem. 2001, 40, 279-283 https://doi.org/10.1023/A:1012728301383
  10. Choi, S.-H.; Ryu, E.-Y.; Ryoo, J.-J.; Lee, K.-P. J. Inc. Phenom., Macrocyc. Chem. 2001, 40, 271-274 https://doi.org/10.1023/A:1012703615268
  11. Fillet, M.; Crommen, P. H. J. J. Chromatogr. A 2000, 875, 123- 134 https://doi.org/10.1016/S0021-9673(00)00084-4
  12. Otsuka, K.; Terabe, S. J. Chromatogr. A 2000, 875, 163-178 https://doi.org/10.1016/S0021-9673(99)01167-X
  13. Lu, X.; Chen, Y. J. Chromatogr. A 2002, 955, 133-140 https://doi.org/10.1016/S0021-9673(02)00186-3
  14. Okafo, G. N.; Camilleri, P. J. Microcol. Sep. 1993, 5, 149 https://doi.org/10.1002/mcs.1220050210
  15. Henglein, A.; Meisel, D. Langmuir 1998, 14, 7392-7396 https://doi.org/10.1021/la981278w
  16. Cointet, C. D.; Khatouri, J.; Mostafavi, M.; Belloni, J. J. Phys. Chem. B 1997, 101, 3517-3522 https://doi.org/10.1021/jp963344d
  17. Fujita, H.; Izawa, M.; Yamazaki, H. Nature 1962, 196, 666- 667 https://doi.org/10.1038/196666a0
  18. Choi, S.-H.; Lee, S.-H.; Hwang, Y.-M.; Lee, K.-P. Radia. Phys. Chem. 2003, 67, 517-521 https://doi.org/10.1016/S0969-806X(03)00097-5
  19. Li, T.; Park, H.-G.; Lee, H.-S.; Choi, S.-H. Nanotechnology 2004, 15, S660-S663 https://doi.org/10.1088/0957-4484/15/10/026
  20. Choi, S.-H.; Park, H.-G. Appl. Surf. Sci. 2005, 243, 76-81 https://doi.org/10.1016/j.apsusc.2004.09.051

Cited by

  1. Preparation of Ag−PS and Ag−PSS particles by γ-irradiation and their antimicrobial efficiency againstStaphylococcus aureus ATCC 6538 andKlebsiella pneumonia ATCC 4352 vol.14, pp.2, 2006, https://doi.org/10.1007/BF03218508
  2. Radiolytic synthesis of Ag-loaded polystyrene (Ag-PS) nanoparticles and their antimicrobial efficiency againststaphylococcus aureus andklebsiella pneumoniase vol.15, pp.4, 2007, https://doi.org/10.1007/BF03218789
  3. Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector vol.182, pp.7-8, 2015, https://doi.org/10.1007/s00604-015-1449-0
  4. Review of aqueous chiral electrokinetic chromatography (EKC) with an emphasis on chiral microemulsion EKC vol.28, pp.15, 2007, https://doi.org/10.1002/elps.200600808
  5. Catalytic Methanolysis Induced by Succinoglycan, a Rhizobial Exopolysaccharide vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.921
  6. Resolution of Three Important π-Basic Chiral Compounds on Recently Developed Five π-Acidic Chiral Columns vol.28, pp.6, 2007, https://doi.org/10.5012/bkcs.2007.28.6.1042
  7. Enantiomeric Recognition and Separation by Chiral Nanoparticles vol.24, pp.6, 2005, https://doi.org/10.3390/molecules24061007