Abstract
In vitro selection was used to isolate $Mg^{2+}$-dependent self-cleaving ribozymes with cis-cleavage activity from a pre-tRNA library having 40-mer random sequences attached to 5'-end of E. coli $tRNA^{Phe}$. After 8 rounds of SELEX (Systematic Evolution of Ligands by Exponential Enrichment), RNA molecules which can self-cleave at the high concentration of $Mg^{2+}$ were isolated. The selected ribozymes can carry out the self-cleavage reaction in the presence of 100 mM $Mg^{2+}$ but not in 10 mM $Mg^{2+}$. The cleavage sites of the ribozymes are located at +3 and +4 of $tRNA^{Phe}$, compared with +1 position of 5'-end cleavage site of pre-tRNA by RNase P. New RNA constructs deprived of its D stem-loop, anticodon stem-loop, variable loop and T stem-loop, respectively showed the cleavage specificity identical to a ribozyme having the intact tRNA structure. Also, the new ribozyme fused with both a ribozyme and $tRNA^{Leu}$ showed the cleavage activities at the various sites within its sequences, different from two sites of position +3 and +4 observed in the ribozyme with $tRNA^{Phe}$. Our results suggest that the selected ribozyme is not structural-specific for tRNA.