DOI QR코드

DOI QR Code

Isolation of New Self-Cleaving Ribozymes with in vitro Selection

  • Cho, Bong-Rae (Department of Applied Chemistry, Division of Applied Science, Cheongju University) ;
  • Lee, Young-Hoon (Dept. of Chemistry and Center for Molecular Design and Synthesis, KAIST)
  • Published : 2005.12.20

Abstract

In vitro selection was used to isolate $Mg^{2+}$-dependent self-cleaving ribozymes with cis-cleavage activity from a pre-tRNA library having 40-mer random sequences attached to 5'-end of E. coli $tRNA^{Phe}$. After 8 rounds of SELEX (Systematic Evolution of Ligands by Exponential Enrichment), RNA molecules which can self-cleave at the high concentration of $Mg^{2+}$ were isolated. The selected ribozymes can carry out the self-cleavage reaction in the presence of 100 mM $Mg^{2+}$ but not in 10 mM $Mg^{2+}$. The cleavage sites of the ribozymes are located at +3 and +4 of $tRNA^{Phe}$, compared with +1 position of 5'-end cleavage site of pre-tRNA by RNase P. New RNA constructs deprived of its D stem-loop, anticodon stem-loop, variable loop and T stem-loop, respectively showed the cleavage specificity identical to a ribozyme having the intact tRNA structure. Also, the new ribozyme fused with both a ribozyme and $tRNA^{Leu}$ showed the cleavage activities at the various sites within its sequences, different from two sites of position +3 and +4 observed in the ribozyme with $tRNA^{Phe}$. Our results suggest that the selected ribozyme is not structural-specific for tRNA.

Keywords

References

  1. Gesteland, R. F.; Cech, T. R.; Atkins, J. F. In The RNA World, 2nd ed; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, 1999; pp 265-286
  2. Winkler, W. C.; Nahvi, A.; Roth, A.; Collins, J. A.; Breaker, R. R. Nature 2004, 428, 281-286 https://doi.org/10.1038/nature02362
  3. Tang, J.; Breaker, R. R. Proc. Natl. Acad. Sci. USA 2000, 97, 5784-5789 https://doi.org/10.1073/pnas.97.11.5784
  4. Meli, M.; Vergne, J.; Maurel, M.-C. J. Biol. Chem. 2003, 278, 9835-9842 https://doi.org/10.1074/jbc.M213058200
  5. Zamel, R.; Poon, A.; Jaikaran, D.; Andersen, A.; Olive, J.; Abreu, D. D.; Collins, R. A. Proc. Natl. Acad. Sci. USA 2004, 101, 1467- 1472 https://doi.org/10.1073/pnas.0305753101
  6. Frank, D. N.; Pace, N. R. Annual Review Biochem. 1998, 67, 153- 180 https://doi.org/10.1146/annurev.biochem.67.1.153
  7. Gopalan, V.; Vioque, A.; Altman, S. J. Biol. Chem. 2002, 277, 6759-6762 https://doi.org/10.1074/jbc.R100067200
  8. Guerrier-Takada, C.; Haydock, K.; Allen, L.; Altman, S. Biochemistry 1986, 25, 1509-1515 https://doi.org/10.1021/bi00355a006
  9. Akaboshi, E.; Guerrier-Takada, C.; Altman, S. Biochem. Biophys. Res. Comm. 1980, 96, 831-837 https://doi.org/10.1016/0006-291X(80)91430-8
  10. Morales, M. J.; Dang, Y. L.; Lou, Y. C.; Sulo, P.; Martin, N. C. Proc. Natl. Acad. Sci. USA 1992, 89, 9875-9879 https://doi.org/10.1073/pnas.89.20.9875
  11. Altman, S.; Kirsebom, L.; Talbot, S. FASEB J. 1993, 7, 7-14
  12. Jarrous, N.; Eder, P. A.; Guerrier-Takada, C.; Hoog, C.; Altman, S. RNA 1998, 4, 407-417
  13. Holbrook, S. R.; Sussman, J. L.; Warrant, W. R.; Church, G. M.; Kim, S.-H. Nucleic Acids Res. 1977, 4, 2811 https://doi.org/10.1093/nar/4.8.2811
  14. Quigley, G. J.; Teeter, M. M.; Rich, A. Proc. Natl. Acad. Sci. USA 1978, 75, 64 https://doi.org/10.1073/pnas.75.1.64

Cited by

  1. Efficient Target Site Selection for an RNA-cleaving DNAzyme through Combinatorial Library Screening vol.27, pp.5, 2005, https://doi.org/10.5012/bkcs.2006.27.5.657