References
- Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493 https://doi.org/10.1016/j.tet.2004.11.082
- Lee, C. G.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 7409 https://doi.org/10.1016/j.tetlet.2004.08.075
- Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron 2003, 59, 385 https://doi.org/10.1016/S0040-4020(02)01518-1
- Kim, J. N.; Chung, Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209 https://doi.org/10.1016/S0040-4039(02)01314-X
- Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Lett. 2001, 42, 8341 https://doi.org/10.1016/S0040-4039(01)01791-9
- Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S. Tetrahedron Lett. 2001, 42, 3737 https://doi.org/10.1016/S0040-4039(01)00552-4
- Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343 https://doi.org/10.1021/ol9903741
- Gowrisankar, S.; Na, J. E.; Lee, M. J.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 319 https://doi.org/10.5012/bkcs.2005.26.2.319
- Lee, K. Y.; Kim, J. M.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 1493 https://doi.org/10.5012/bkcs.2002.23.10.1493
- Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 939 https://doi.org/10.5012/bkcs.2002.23.7.939
- Na, J. E.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 323 https://doi.org/10.5012/bkcs.2005.26.2.323
- Kim, J. M.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 328 https://doi.org/10.5012/bkcs.2004.25.2.328
- Lee, K. Y.; Kim, T. H.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 1966 https://doi.org/10.5012/bkcs.2004.25.12.1966
- Rajesh, S.; Banerji, B.; Iqbal, J. J. Org. Chem. 2002, 67, 7852 https://doi.org/10.1021/jo010981d
- Bauchat, P.; Le Rouille, E.; Foucaud, A. Bull. Chim. Soc. Fr. 1991, 267
- Buchholz, R.; Hoffmann, H. M. R. Helv. Chim. Acta 1991, 74, 1213 https://doi.org/10.1002/hlca.19910740608
- Castro, A. M. M. Chem. Rev. 2004, 104, 2939 https://doi.org/10.1021/cr020703u
- Jolidon, S.; Hansen, H.-J. Helv. Chim. Acta 1977, 60, 978 https://doi.org/10.1002/hlca.19770600329
- Anderson, W. K.; Lai, G. Synthesis 1995, 1287
- Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. Chem. Commun. 2001, 2576
- Cho, C. S.; Kim, B. T.; Choi, H.-J.; Kim, T.-J.; Shim, S. C. Tetrahedron 2003, 59, 7997 https://doi.org/10.1016/j.tet.2003.08.027
- Palimkar, S. S.; Siddiqui, S. A.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. J. Org. Chem. 2003, 68, 9371 https://doi.org/10.1021/jo035153u
- Abbiati, G.; Beccalli, E. M.; Broggini, G.; Zoni, C. Tetrahedron 2003, 59, 9887 https://doi.org/10.1016/j.tet.2003.10.053
Cited by
- Chemo- and regio-selective functionalization of Morita–Baylis–Hillman bromides with anthranilic acid vol.87, pp.12, 2009, https://doi.org/10.1139/V09-128
- Recent Advances in Construction of Nitrogen-containing Heterocycles from Baylis-Hillman Adducts vol.43, pp.1, 2011, https://doi.org/10.1080/00304948.2011.549065
- ]quinolines from Morita-Baylis-Hillman Adducts of 2-Bromobenzaldehydes vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10050
- ]quinoline-1,2-diones via Intramolecular Friedel-Crafts Cyclization Protocol vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10539
- Functionalization of Baylis - Hillman Bromides with Symmetric and Asymmetric Bifunctional Aromatics vol.60, pp.3, 2007, https://doi.org/10.1071/CH06342
- Baylis-Hillman Reaction and Chemical Transformations of Baylis-Hillman Adducts vol.26, pp.10, 2005, https://doi.org/10.5012/bkcs.2005.26.10.1481
- Synthesis of Polysubstituted Quinolines from the Acetates of Baylis—Hillman Adducts: Aza-Claisen Rearrangement as the Key Step. vol.36, pp.47, 2005, https://doi.org/10.1002/chin.200547136
- The Baylis–Hillman approach to quinoline derivatives vol.4, pp.21, 2005, https://doi.org/10.1039/b608592j
- Formation of substituted N-oxide hydroxyquinolines from o-nitrophenyl Baylis–Hillman adduct: a new key intermediate intercepted by ESI-(+)-MS(/MS) monitoring vol.47, pp.47, 2006, https://doi.org/10.1016/j.tetlet.2006.09.037
- An Expedient Synthesis of β-Phenyl Substituted Baylis-Hillman and Aza-Baylis-Hillman Adducts vol.29, pp.1, 2005, https://doi.org/10.5012/bkcs.2008.29.1.265
- Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks vol.64, pp.20, 2008, https://doi.org/10.1016/j.tet.2008.02.087
- Ultrasound-promoted access to Baylis-Hillman amines vol.16, pp.6, 2005, https://doi.org/10.1016/j.ultsonch.2009.02.006
- Accelerated Amination of Baylis-Hillman Acetates Under Ultrasound Irradiation vol.40, pp.13, 2005, https://doi.org/10.1080/00397910903219310
- Regioselective Synthesis of Fluorenones via the Consecutive In-Mediated Barbier Reaction, Pd-Catalyzed Cyclization, and Friedel-Crafts Reaction Starting from Baylis-Hillman Adducts vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1387