DOI QR코드

DOI QR Code

A Study of in vitro Scavenging Reactions of Acrylamide with Glutathione Using Electrospray Ionization Tandem Mass Spectrometry

  • Cui, Sheng-Yun (Department of Chemistry, Yanbian University) ;
  • Kim, Seung-Jin (Department of Chemistry, Changwon National University) ;
  • Jo, Sung-Chan (Center for Biomarker Analysis, The University of Tennessee) ;
  • Lee, Yong-Moon (College of Pharmacy, Chungbuk National University) ;
  • Lee, Yong-Ill (Department of Chemistry, Changwon National University)
  • Published : 2005.08.20

Abstract

A combination of electrospray ionization and tandem mass spectrometry was used to characterize the scavenging reactions of acrylamide (AA) in the presence of glutathione (GSH) in vitro. In the presence of GSH, AA was deactivated effectively and scavenged by reactions consuming small amount of GSH. Reaction products and structural information were identified using collision-induced dissociation (CID) in an ion trap mass spectrometer. In the mixture of GSH and AA, significant increase in abundance of fragment ion peak was observed at m/z 233, which was identified as $[Cys-Glu]^+$, formed by the elimination of glycine moiety of GSH. GSH also contributes to the AA scavenging reaction by conjugating with AA through the sulfhydryl group in cysteine moiety. The probable scavenging reaction pathway of AA in the presence of GSH has been proposed based on the CID experimental data.

Keywords

References

  1. Pausson, B.; Granath, F.; Grawe, J.; Ehrenberg, L.; Tornqvist, M. Carcinoginisis 2001, 22, 817 https://doi.org/10.1093/carcin/22.5.817
  2. Friedman, M. A. J. Agric. Food Chem. 2003, 51, 4504 https://doi.org/10.1021/jf030204+
  3. Friedman, M. A.; Dulak, L. H.; Stedman, M. A. Fundam. Appl. Toxicol. 1995, 27, 95 https://doi.org/10.1006/faat.1995.1112
  4. Park, J.; Kamendulis, L. M.; Friedman, M. A.; Klaunig, J. E. Toxicol. Sci. 2002, 65, 177 https://doi.org/10.1093/toxsci/65.2.177
  5. Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Tornqvist, M. Chem. Res. Toxicol. 2000, 13, 517 https://doi.org/10.1021/tx9901938
  6. Mottram, D. S.; Wedzicha, B. L.; Dodson, A. T. Nature 2002, 419, 448 https://doi.org/10.1038/419448a
  7. Pedreschi, F.; Kaack, K. Food Sci. Technol. 2004, 37, 679
  8. Yaylayan, V. A.; Wnorowski, A.; Carolina, P. L. J. Agric. Food Chem. 2003, 51, 1753 https://doi.org/10.1021/jf0261506
  9. Svensson, K.; Abramsson, L.; Becker, W.; Glynn, A.; Hellena, K. E.; Lind, Y.; Rose, J. Food and Chemical Toxicology 2003, 41, 1581 https://doi.org/10.1016/S0278-6915(03)00188-1
  10. Varoujan, A. Y.; Aanrzej, W.; Carolina, P. L. J. Agric. Food Chem. 2003, 51, 1753 https://doi.org/10.1021/jf0261506
  11. Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Tornqvist, M. J. Agric. Food Chem. 2002, 50, 4998 https://doi.org/10.1021/jf020302f
  12. Stadler, R. H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.; Robert, M. C.; Riediker, S. Nature 2002, 419, 449 https://doi.org/10.1038/419449a
  13. Motram, D. S.; Wedzicha, B. L.; Dodson, A. T. Nature 2002, 419, 448 https://doi.org/10.1038/419448a
  14. Yaylayan, V. A.; Wronowski, A. J. Agric. Food Chem. 2000, 48, 3549 https://doi.org/10.1021/jf9913099
  15. Mucci, L. A.; Dickman, P. W.; Steineck, G.; Adami, H. O.; Augustsson, K. British Journal of Cancer 2003, 88, 84 https://doi.org/10.1038/sj.bjc.6600726
  16. Goncalo, G. C.; Mona, I. C.; Patrice, L; Linda, S.; Frederick, B. A.; Matilde, M.; Daniel, R. D. Chem. Res. Toxicol. 2003, 16, 1328 https://doi.org/10.1021/tx034108e
  17. Bull, R. J.; Robinson, M.; Laurie, R. D.; Stoner, G. D.; Greisiger, E.; Meier, J. R. Cancer Res. 1984, 44, 107
  18. Detlef, S.; Sophie, H. Rapid Commun. Mass Spectrom. 1998, 12, 273
  19. Weixing, S.; Junqiu, L.; Mei, C.; Fengrui, S.; Shuying, L. Rapid Commun. Mass Spectrom. 1999, 13, 950 https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<950::AID-RCM592>3.0.CO;2-5
  20. Marjan, G.; Simon, M.; Anita, M.; Julija, B. V.; Joze, M. Rapid Commun. Mass Spectrom. 2002, 16, 1186 https://doi.org/10.1002/rcm.700
  21. Mike, J. M.; Teva, V.; Chris, L.; Marc, V. M.; Dirk, I. Journal of Experimental Botany 1998, 49, 649 https://doi.org/10.1093/jexbot/49.321.649
  22. Simon, C.; Gamble, A. W.; Peter, S. G. J. Chem. Tech. Biotechnol. 1997, 68, 123 https://doi.org/10.1002/(SICI)1097-4660(199702)68:2<123::AID-JCTB641>3.0.CO;2-O
  23. Electrospray Ionization Mass Spectrometry; Cole, R. B., Ed.; John Wiley-VCH: New York; USA, 1997
  24. Lee, Y. I.; Jo, S. C.; Tao, W. A.; Cooks, R. G. Rapid Com. Mass Spectrom. 2001, 15, 484 https://doi.org/10.1002/rcm.254
  25. Park, S. Y.; Chun, M. S.; Song, J. S.; Kim, H. J. Bull. Korean Chem. Soc. 2005, 26(4), 575 https://doi.org/10.5012/bkcs.2005.26.4.575
  26. Muller, M.; Zechmann, B.; Zellnig, G. Protoplasma 2004, 223, 213
  27. Cai, X. M.; Chhabil, D. Rapid Commun. Mass Spectrom. 2005, 19, 1 https://doi.org/10.1002/rcm.1739
  28. Barbara, H.; Maria, S. Cellular & Molecular Biology Letters 2004, 9, 329

Cited by

  1. Formation and Reduction of Acrylamide in Maillard Reaction: A Review Based on the Current State of Knowledge vol.47, pp.5, 2007, https://doi.org/10.1080/10408390600920070
  2. Current literature in mass spectrometry vol.41, pp.8, 2006, https://doi.org/10.1002/jms.955
  3. _transferase-dependent detoxification of acrylamide in Caco-2 cells vol.53, pp.12, 2009, https://doi.org/10.1002/mnfr.200900447
  4. Role of thiol‐complex formation in 2‐hydroxyethyl‐ methacrylate‐induced toxicity in vitro vol.96, pp.2, 2005, https://doi.org/10.1002/jbm.a.32993
  5. Patterned Poly(acrylic acid) Brushes Containing Gold Nanoparticles for Peptide Detection by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry vol.87, pp.21, 2005, https://doi.org/10.1021/acs.analchem.5b00734
  6. Light-induced alterations of pineapple (Ananas comosus [L.] Merr.) juice volatiles during accelerated ageing and mass spectrometric studies into their precursors vol.100, pp.3, 2005, https://doi.org/10.1016/j.foodres.2017.06.030
  7. Role of glutathione on acrylamide inhibition: Transformation products and mechanism vol.326, pp.None, 2005, https://doi.org/10.1016/j.foodchem.2020.126982