DOI QR코드

DOI QR Code

Synthesis and Structure of Sr6Ge5N2 and Ba6Ge5N2

  • Park, Dong-Gon (Department of Chemistry, Sookmyung Women's University) ;
  • Gal, Zoltan A. (Baker Laboratory, Department of Chemistry, Cornell University) ;
  • DiSalvo, Francis J. (Baker Laboratory, Department of Chemistry, Cornell University)
  • Published : 2005.10.20

Abstract

Two isostructural new alkaline earth germanium nitrides, $Sr_6Ge_5N_2\;and\;Ba_6Ge_5N_2$, were obtained as single crystals from constituent elements in molten Na. They both crystallize in space group $P_{mmn}$ (No. 59) with a = 4.0007(8), b = 17.954(3), c = 9.089(2) $\AA$, Z = 2, and a = 4.1620(2), b = 18.841(1), c = 9.6116(5) $\AA$, Z = 2, for $Sr_6Ge_5N_2\;and\;Ba_6Ge_5N_2$, respectively. Their crystal structure contains features for both Zintl and nitride phases: zigzag anionic chain of $_{\infty}Ge^{2-}$, and dumbbell-shaped bent anion of ${GeN_2}^{4-}$. Counter cations of Sr or Ba wrap these anionic units in a channel-like arrangement. Unlike in other germanium nitrides, bond lengths of both Ge-N arms of the ${GeN_2}^{4-}$, are same in $Sr_6Ge_5N_2\;and\;Ba_6Ge_5N_2$.

Keywords

References

  1. Niewa, R.; DiSalvo, F. J. Chem. Mater. 1998, 10, 2733 https://doi.org/10.1021/cm980137c
  2. Schnick, W.; Huppertz, H. Chem. Eur. J. 1997, 3, 679 https://doi.org/10.1002/chem.19970030505
  3. Simon, A. Coord. Chem. Rev. 1997, 163, 253 https://doi.org/10.1016/S0010-8545(97)00013-1
  4. Kniep, R. Pure & Appl. Chem. 1997, 69, 185 https://doi.org/10.1351/pac199769010185
  5. DiSalvo, F. J.; Clarke, S. J. Current Opinion Solid State & Materials Science 1996, 1, 241 https://doi.org/10.1016/S1359-0286(96)80091-X
  6. Niewa, R.; Jacobs, H. Chem. Rev. 1996, 96, 2053 https://doi.org/10.1021/cr9405157
  7. Rohr, C. Angew. Chem. Int. Ed. Engl. 1996, 35, 1199 https://doi.org/10.1002/anie.199611991
  8. Schnick, W. Intl. J. Inorg. Mater. 2001, 3, 1267 https://doi.org/10.1016/S1466-6049(01)00120-9
  9. Yamane, H.; Shimada, M.; DiSalvo, F. J. Mater. Sci. Forum 2000, 3, 325
  10. Gregory, D. H. J. Chem. Soc. Dalton Trans. 1999, 259
  11. Kowach, G. R.; Brese, N. E.; Bolle, U. M.; Warren, C. J.; DiSalvo, F. J. J. Solid State Chem. 2000, 154, 542 https://doi.org/10.1006/jssc.2000.8877
  12. Yamane, H.; DiSalvo, F. J. J. Solid State Chem. 1995, 119, 375 https://doi.org/10.1016/0022-4596(95)80055-T
  13. Clarke, S. J.; DiSalvo, F. J. Inorg. Chem. 2000, 39, 2631 https://doi.org/10.1021/ic991427d
  14. Clarke, S. J.; DiSalvo, F. J. J. Alloys Comp. 1998, 274, 118 https://doi.org/10.1016/S0925-8388(98)00533-7
  15. Clarke, S. J.; DiSalvo, F. J. J. Alloys Comp. 1997, 259, 158 https://doi.org/10.1016/S0925-8388(97)00095-9
  16. Clarke, S. J.; DiSalvo, F. J. Inorg. Chem. 1997, 36, 1143 https://doi.org/10.1021/ic9612562
  17. Clarke, S. J.; Kowach, G. R.; DiSalvo, F. J. Inorg. Chem. 1996, 35, 7009 https://doi.org/10.1021/ic960518x
  18. Yamane, H.; DiSalvo, F. J. Acta Cryst. 1996, C52, 760
  19. Yamane, H.; DiSalvo, F. J. J. Alloys Comp. 1996, 240, 33 https://doi.org/10.1016/0925-8388(96)02242-6
  20. Yamane, H.; DiSalvo, F. J. J. Alloys Comp. 1996, 241, 69 https://doi.org/10.1016/0925-8388(96)02326-2
  21. Park, D. G.; Gál, Z. A.; DiSalvo, F. J. J. Alloys Comp. 2003, 360, 85 https://doi.org/10.1016/S0925-8388(03)00370-0
  22. Park, D. G.; Gál, Z. A.; DiSalvo, F. J. J. Solid State Chem. 2003, 172, 166 https://doi.org/10.1016/S0022-4596(03)00009-4
  23. Park, D. G.; Gal, Z. A.; DiSalvo, F. J. Bull. Korean Chem. Soc. 2005, 26, 786 https://doi.org/10.5012/bkcs.2005.26.5.786
  24. SAINT Plus: Software for the CCD system; Bruker Analytical Xray System: Madison, WI, 1999
  25. Sheldrick, G. M. SADABS; Institute für Anorganische Chemie der Universitat Gotingen: Gotingen, Germany, 1999
  26. Sheldrick, G. M. SHELXL 97; Institute fur Anorganische Chemie der Universitat Gotingen: Gotingen, Germany, 1997
  27. Gelato, L. M.; Parthe, E. J. Appl. Cryst. 1987, 20, 139 https://doi.org/10.1107/S0021889887086965
  28. Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837 https://doi.org/10.1107/S0021889899006020
  29. Rieger, W.; Parthe, E. Acta Crystallogr. 1967, 22, 919 https://doi.org/10.1107/S0365110X67001793
  30. Park, D. G.; Gal, Z. A.; DiSalvo, F. J. Inorg. Chem. 2003, 42, 1779 https://doi.org/10.1021/ic025874w
  31. Park, D. G.; Gal, Z. A.; DiSalvo, F. J. J. Alloys Comp. 2003, 353, 107 https://doi.org/10.1016/S0925-8388(02)01205-7

Cited by

  1. vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1759
  2. vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10431
  3. - A Layered Nitridomagnesogermanate vol.642, pp.16, 2016, https://doi.org/10.1002/zaac.201600200
  4. and Theoretical Calculations of Its Electronic Properties vol.2017, pp.18, 2017, https://doi.org/10.1002/ejic.201700096
  5. Sr5Ge2N6 – A Nitridogermanate with Edge-sharing Double Tetrahedra vol.634, pp.8, 2008, https://doi.org/10.1002/zaac.200800049
  6. Synthesis and Structure of Sr6Ge5N2 and Ba6Ge5N2. vol.37, pp.4, 2005, https://doi.org/10.1002/chin.200604003
  7. Ba9Ge3N10 : A New Ternary Nitride Containing Isolated Planar Triangular Anions of [GeN3]5- vol.29, pp.12, 2005, https://doi.org/10.5012/bkcs.2008.29.12.2413
  8. Synthesis and Crystal Structure of the New Quaternary Subnitride, Sr2GeGaN vol.30, pp.6, 2009, https://doi.org/10.5012/bkcs.2009.30.6.1379
  9. LiSrGe2 and LiBaGe2: One-dimensional chains of [Ge2]3-∼1 in an unusual conformation vol.470, pp.1, 2009, https://doi.org/10.1016/j.jallcom.2008.02.097
  10. A Structural Comparison between a New Quaternary Nitride, Ba3GeMgN4, and Its Isostructural Sr analogue vol.32, pp.1, 2005, https://doi.org/10.5012/bkcs.2011.32.1.353
  11. Diversity of Strontium Nitridogermanates(IV): Novel Sr4[GeN4], Sr8Ge2[GeN4], and Sr17Ge2[GeN3]2[GeN vol.646, pp.14, 2005, https://doi.org/10.1002/zaac.202000008