DOI QR코드

DOI QR Code

Biosurface Organic Chemistry: Interfacial Chemical Reactions for Applications to Nanobiotechnology and Biomedical Sciences

  • Chi, Young-Shik (Department of Chemistry and School of Molecular Science(BK21), Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Jung-Kyu K. (Department of Chemistry and School of Molecular Science(BK21), Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Kyung-Bok (Department of Chemistry and School of Molecular Science(BK21), Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Dong-Jin (Department of Chemistry and School of Molecular Science(BK21), Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Choi, In-Sung S. (Department of Chemistry and School of Molecular Science(BK21), Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology (KAIST))
  • Published : 2005.03.20

Abstract

In this review, the field of biosurface organic chemistry is defined and some examples are presented. The aim of biosurface organic chemistry, composed of surface organic chemistry, bioconjugation, and micro- and nanofabrication, is to control the interfaces between biological and non-biological systems at the molecular level. Biosurface organic chemistry has evolved into the stage, where the lateral and vertical control of chemical compositions is achievable with recent developments of nanoscience and nanotechnology. Some new findings in the field are discussed in consideration of their applicability to nanobiotechnology and biomedical sciences.

Keywords

References

  1. Huck, W. T. S. Eur. J. Org. Chem. 2003, 17
  2. Chechik, V.; Crooks, R. M.; Stirling, C. J. M. Adv. Mater. 2000, 12, 1161 https://doi.org/10.1002/1521-4095(200008)12:16<1161::AID-ADMA1161>3.0.CO;2-C
  3. Gershevitz, O.; Sukenik, C. N. J. Am. Chem. Soc. 2004, 126, 482 https://doi.org/10.1021/ja037610u
  4. Konek, C. T.; Musorrafiti, M. J.; Al-Abadleh, H. A.; Bertin, P. A.; Nguyen, S. T.; Geiger, F. M. J. Am. Chem. Soc. 2004, 126, 11754 https://doi.org/10.1021/ja0474300
  5. Houseman, B. T.; Mrksich, M. Angew. Chem. Int. Ed. 1999, 38, 782 https://doi.org/10.1002/(SICI)1521-3773(19990315)38:6<782::AID-ANIE782>3.0.CO;2-N
  6. Ryswyk, H. V.; Turtle, E. D.; Watson-Clark, R.; Tanzer, T. A.; Herman, T. K.; Chong, P. Y.; Waller, P. J.; Taurog, A. L.; Wagner, C. E. Langmuir 1996, 12, 6143 https://doi.org/10.1021/la960027p
  7. Kumar, J. K.; Oliver, J. S. J. Am. Chem. Soc. 2002, 124, 11307 https://doi.org/10.1021/ja016737l
  8. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293 https://doi.org/10.1021/cr030698+
  9. Niemeyer, C. M. Angew. Chem. Int. Ed. 2001, 40, 4128 https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  10. Ulman, A. Chem. Rev. 1996, 96, 1533 https://doi.org/10.1021/cr9502357
  11. Schreiber, F. Prog. Surf. Sci. 2000, 65, 151 https://doi.org/10.1016/S0079-6816(00)00024-1
  12. Mrksich, M. Cell. Mol. Life Sci. 1998, 54, 653 https://doi.org/10.1007/s000180050193
  13. Chaki, N. K.; Vijayamohanan, K. Biosens. Bioelectron. 2002, 17, 1 https://doi.org/10.1016/S0956-5663(01)00260-3
  14. Poirier, G. E. Chem. Rev. 1997, 97, 1117 https://doi.org/10.1021/cr960074m
  15. Nath, N.; Chilkoti, A. Adv. Mater. 2002, 14, 1243 https://doi.org/10.1002/1521-4095(20020903)14:17<1243::AID-ADMA1243>3.0.CO;2-M
  16. Jacobs, H. O.; Tao, A. R.; Schwartz, A.; Gracias, D. H.; Whitesides, G. M. Science 2002, 296, 323 https://doi.org/10.1126/science.1069153
  17. Craighead, H. G. Science 2000, 290, 1532 https://doi.org/10.1126/science.290.5496.1532
  18. Galaev, I. Y.; Mattiasson, B. Trends Biotechnol. 1999, 17, 335 https://doi.org/10.1016/S0167-7799(99)01345-1
  19. Aksay, I. A.; Trau, M.; Manne, S.; Honma, I.; Yao, N.; Zhou, L.; Fenter, P.; Eisenberger, P. M.; Gruner, S. M. Science 1996, 273, 892 https://doi.org/10.1126/science.273.5277.892
  20. Ebara, M.; Yamato, M.; Hirose, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Biomacromolecules 2003, 4, 344 and references therein
  21. Lendlein, A.; Langer, R. Science 2002, 296, 1673 https://doi.org/10.1126/science.1066102
  22. Tiller, J. C.; Liao, C.-J.; Lewis, K.; Klibanov, A. M. Proc. Natl. Acad. Sci. USA 2001, 98, 5981
  23. Li, S. K.; D'Emanuele, A. J. Control. Release 2001, 75, 55
  24. Meyer, D. E.; Shin, B. C.; Kong, G. A.; Dewhirst, M. W.; Chilkoti, A. J. J. Control. Release 2001, 74, 213 https://doi.org/10.1016/S0168-3659(01)00319-4
  25. Chen, G.; Imanish, Y.; Ito, Y. J. Biomed. Mater. Res. 1998, 42, 38 https://doi.org/10.1002/(SICI)1097-4636(199810)42:1<38::AID-JBM6>3.0.CO;2-P
  26. Koberstein, J. T.; Duch, D. E.; Hu, W.; Lenk, T. J.; Bhatia, R.; Brown, H. R.; Lingelser, J. P.; Gallot, J. P. J. Adhes. 1998, 66, 229 https://doi.org/10.1080/00218469808009967
  27. Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Adv. Mater. 1999, 11, 1365 https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F
  28. Youngblood, J. P.; McCarthy, T. J. Macromolecules 1999, 32, 6800 https://doi.org/10.1021/ma9903456
  29. Coulson, S. R.; Woodward, I.; Badyal, J. P. S.; Brewer, S. A.; Willis, C. J. Phys. Chem. B 2000, 104, 8836 https://doi.org/10.1021/jp0000174
  30. Lafuma, A.; Quere, D. Nat. Mater. 2003, 2, 457 https://doi.org/10.1038/nmat924
  31. Luk, Y.-Y.; Abbott, N. L. Science 2003, 301, 623
  32. Wilbur, J. L.; Kumar, A.; Biebuyck, H. A.; Kim, E.; Whitesides, G. M. Nanotechnology 1996, 7, 452 https://doi.org/10.1088/0957-4484/7/4/028
  33. Gleiche, M.; Chi, L. F.; Fuchs, H. Nature 2000, 403, 173 https://doi.org/10.1038/35003149
  34. Tan, J. L.; Tien, J.; Chen, C. S. Langmuir 2002, 18, 519 https://doi.org/10.1021/la011351+
  35. Minko, S.; Muller, M.; Motornov, M.; Nitschke, M.; Grundke, K.; Stamm, M. J. Am. Chem. Soc. 2003, 125, 3896 https://doi.org/10.1021/ja0279693
  36. Julthongpiput, D.; Lin, Y.-H.; Teng, J.; Zubarev, E. R.; Tsukruk, V. V. Langmuir 2003, 19, 7832
  37. Julthongpiput, D.; Lin, Y.-H.; Teng, J.; Zubarev, E. R.; Tsukruk, V. V. J. Am. Chem. Soc. 2003, 125, 15912
  38. Chatelier, R. C.; Drummond, C. J.; Chan, D. Y. C.; Vasic, Z. R.; Gengenbach, T. R.; Griesser, H. J. Langmuir 1995, 11, 4122 https://doi.org/10.1021/la00010a078
  39. Ista, L. K.; Perez-Luna, V. H.; Lopez, G. P. Appl. Environ. Microbiol. 1999, 65, 1603
  40. de Crevoisier, G.; Fabre, P.; Corpart, J.-M.; Leibler, L. Science 1999, 285, 1246
  41. Ohnishi, S.; Ishida, T.; Yaminsky, V. V.; Christenson, H. K. Langmuir 2000, 16, 2722 https://doi.org/10.1021/la991167c
  42. Abbott, S.; Ralston, J.; Reynolds, G.; Hayes, R. Langmuir 1999, 15, 8923 https://doi.org/10.1021/la990558o
  43. Ichimura, K.; Oh, S.-K.; Nakagawa, M. Science 2000, 288, 1624
  44. Lahann, J.; Mitragotri, S.; Tran, T.-N.; Kaido, H.; Sundaram, J.; Choi, I. S.; Hoffer, S.; Somorjai, G. A.; Langer, R. Science 2003, 299, 371
  45. Gallardo, B. S.; Gupta, V. K.; Eagerton, F. D.; Jong, L. I.; Craig, V. S.; Shah, R. R.; Abbott, N. L. Science 1999, 283, 57 https://doi.org/10.1126/science.283.5398.57
  46. Evans, S. D.; Johnson, S. R.; Ringsdorf, H.; Williams, L. M.; Wolf, H. Langmuir 1998, 14, 6436 https://doi.org/10.1021/la980450t
  47. Lee, B. S.; Chi, Y. S.; Lee, J. K.; Choi, I. S.; Song, C. E.; Namgoong, S. K.; Lee, S.-g. J. Am. Chem. Soc. 2004, 126, 480
  48. Chi, Y. S.; Lee, J. K.; Lee, S.-g.; Choi, I. S. Langmuir 2004, 20, 3024
  49. Lee, B. S.; Lee, S.-g. Bull. Korean Chem. Soc. 2004, 25, 1531
  50. MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760
  51. Flink, S.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Adv. Mater. 2000, 12, 1315 https://doi.org/10.1002/1521-4095(200009)12:18<1315::AID-ADMA1315>3.0.CO;2-K
  52. Kakkar, A. K. Chem. Rev. 2002, 102, 3579 https://doi.org/10.1021/cr010360k
  53. Choi, I. S.; Langer, R. Macromolecules 2001, 34, 5361 https://doi.org/10.1021/ma010148i
  54. Yoon, K. R.; Lee, K.-B.; Chi, Y. S.; Yun, W. S.; Joo, S.-W.; Choi, I. S. Adv. Mater. 2003, 15, 2063
  55. Yoon, K. R.; Chi, Y. S.; Lee, K.-B.;Lee, J. K.; Kim, D. J.; Koh, Y.-J.; Joo, S.-W.; Yun, W. S.; Choi, I. S. J. Mater. Chem. 2003, 13, 2910
  56. Mrksich, M.; Whitesides, G. M. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55 https://doi.org/10.1146/annurev.bb.25.060196.000415
  57. Roberts, C.; Chen, C. S.; Mrksich, M.; Martichonok, V.; Ingber, D. E.; Whitesides, G. M. J. Am. Chem. Soc. 1998, 120, 6548 https://doi.org/10.1021/ja972467o
  58. Lahiri, J.; Isaacs, L.; Tien, J.; Whitesides, G. M. Anal. Chem. 1999, 71, 777 https://doi.org/10.1021/ac980959t
  59. Duvel, R. V.; Corn, R. M. Anal. Chem. 1992, 64, 337 https://doi.org/10.1021/ac00028a003
  60. Sortino, S.; Petralia, S.; Conoci, S.; Bella, S. D. J. Am. Chem. Soc. 2003, 125, 1122 https://doi.org/10.1021/ja029258a
  61. Yan, L.; Marzolin, C.; Terfort, A.; Whitesides, G. M. Langmuir 1997, 113, 6704
  62. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. Langmuir 2001, 17, 5605 https://doi.org/10.1021/la010384m
  63. Hyun, J.; Chilkoti, A. Macromolecules 2001, 34, 5644 https://doi.org/10.1021/ma002125u
  64. Schmid, E. L.; Keller, T. A.; Cienes, Z.; Vogel, H. Anal. Chem. 1997, 69, 1979 https://doi.org/10.1021/ac9700033
  65. Frey, B. L.; Corn, R. M. Anal. Chem. 1996, 68, 3187
  66. Cooper, M. A.; Fiorini, M. T.; Abell, C.; Williams, D. H. Bioorg. Med. Chem. 2000, 8, 2609 https://doi.org/10.1016/S0968-0896(00)00184-X
  67. Pirrung, M. C. Angew. Chem. Int. Ed. 2002, 41, 1276 https://doi.org/10.1002/1521-3773(20020415)41:8<1276::AID-ANIE1276>3.0.CO;2-2
  68. Pardo, L.; Wilson, W. C.; Boland, T. J. Langmuir 2003, 19, 1462 https://doi.org/10.1021/la026171u
  69. Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  70. Li, H.-W.; Muir, B. V. O.; Fichet, G.; Huck, W. T. S. Langmuir 2003, 19, 1963 https://doi.org/10.1021/la0269098
  71. Odom, T. W.; Thallade, V. R.; Love, J. C.; Whitesides, G. M. J. Am. Chem. Soc. 2002, 124, 12112 https://doi.org/10.1021/ja0209464
  72. Li, H.-W.; Kang, D.-J.; Blamire, M. G.; Huck, W. T. S. Nano Lett. 2002, 2, 347 https://doi.org/10.1021/nl025503c
  73. Ginger, D. S.; Zhang, H.; Mirkin, C. A. Angew. Chem. Int. Ed. 2004, 43, 30 https://doi.org/10.1002/anie.200300608
  74. Wadu-Mesthrige, K.; Amro, N. A.; Garno, J. C.; Xu, S.; Liu, G.-Y. Biophys. J. 2001, 80, 1891 https://doi.org/10.1016/S0006-3495(01)76158-9
  75. Kramer, S.; Fuierer, R. R.; Gorman, C. B. Chem. Rev. 2003, 103, 4367 https://doi.org/10.1021/cr020704m
  76. Lee, J. K.; Kim, Y.-G.; Chi, Y. S.; Yun, W. S.; Choi, I. S. J. Phys. Chem. B 2004, 108, 7665 https://doi.org/10.1021/jp0378236
  77. Yousaf, M. N.; Chan, E. W. L.; Mrksich, M. Angew. Chem. Int. Ed. 2000, 39, 1943 https://doi.org/10.1002/1521-3773(20000602)39:11<1943::AID-ANIE1943>3.0.CO;2-#
  78. Gawalt, E. S.; Mrksich, M. J. Am. Chem. Soc. 2004, 126, 15613 https://doi.org/10.1021/ja048978+
  79. Chan, E. W. L.; Yousaf, M. N.; Mrksich, M. J. Phys. Chem. A 2000, 104, 9315 https://doi.org/10.1021/jp000545f
  80. Kwon, Y.; Mrksich, M. J. Am. Chem. Soc. 2002, 124, 806 https://doi.org/10.1021/ja010740n
  81. Yousaf, M. N.; Mrksich, M. J. Am. Chem. Soc. 1997, 121, 4286 https://doi.org/10.1021/ja983529t
  82. Houseman, B. T.; Huh, J. H.; Kron, S. J.; Mrksich, M. Nat. Biotechnol. 2002, 20, 270 https://doi.org/10.1038/nbt0302-270
  83. Houseman, B. T.; Mrksich, M. Trends Biotechnol. 2002, 20, 279 https://doi.org/10.1016/S0167-7799(02)01984-4
  84. Yeo, W.-S.; Yousaf, M. N.; Mrksich, M. J. Am. Chem. Soc. 2003, 125, 14994 https://doi.org/10.1021/ja038265b
  85. Houseman, B. T.; Mrksich, M. Chem. Biol. 2002, 9, 443 https://doi.org/10.1016/S1074-5521(02)00124-2
  86. Hodneland, C. D.; Mrksich, M. J. Am. Chem. Soc. 2000, 122, 4235 https://doi.org/10.1021/ja000419p
  87. Houseman, B. T.; Mrksich, M. Biomaterials 2001, 22, 943 https://doi.org/10.1016/S0142-9612(00)00259-3
  88. Yeo, W.-S.; Hodneland, C. D.; Mrksich, M. ChemBioChem 2001, 590
  89. Hodneland, C. D.; Lee, Y.-S.; Min, D.-H.; Mrksich, M. Proc. Natl. Acad. Sci. USA 2002, 99, 5048
  90. Ratner, D. M.; Adams, E. W.; Su, J.; O'Keefe, B. R.; Mrksich, M.; Seeberger, P. H. ChemBioChem. 2004, 5, 379 https://doi.org/10.1002/cbic.200300804
  91. Kim, K.; Yang, H.; Jon, S.; Kim, E.; Kwak, J. J. Am. Chem. Soc. 2004, 126, 15368 https://doi.org/10.1021/ja0459330
  92. Matsubara, S.; Yamamoto, H.; Oshima, K.; Mouri, E.; Matsuoka, H. Chem. Lett. 2002, 886
  93. Tarducci, C.; Badyal, J. P. S.; Brewer, S. A.; Willis, C. Chem. Commun. 2005, 406
  94. Roucoules, V.; Fail, C. A.; Schofield, W. C. E.; Teare, D. O. H.; Badyal, J. P. S. Langmuir 2005, 21, 1412 https://doi.org/10.1021/la0479657
  95. Jocys, G. J.; Workentin, M. S. Chem. Commun. 1999, 839
  96. Hu, J.; Liu, Y.; Khemtong, C.; El Khoury, J. M.; McAfoos, T. J.; Taschner, I. S. Langmuir 2004, 20, 4933 https://doi.org/10.1021/la049629w
  97. Riepl, M.; Enander, K.; Liedberg, B. Langmuir 2002, 18, 7016 https://doi.org/10.1021/la011732n
  98. Satjapipat, M.; Sanedrin, R.; Zhou, F. Langmuir 2001, 17, 7637 https://doi.org/10.1021/la010989i
  99. Perez-Luna, V. H.; O'Brien, M. J.; Opperman, K. A.; Hampton, P. D.; Lopez, G. P.; Klumb, L. A.; Stayton, P. S. J. Am. Chem. Soc. 1999, 121, 6469 https://doi.org/10.1021/ja983984p
  100. Boncheva, M.; Scheibler, L.; Lincoln, P.; Vogel, H.; Akerman, B. Langmuir 1999, 15, 4317 https://doi.org/10.1021/la981702t
  101. Hong, B. J.; Shim, J. Y.; Oh, S. J.; Park, J. W. Langmuir 2003, 19, 2357 https://doi.org/10.1021/la026367u
  102. Choi, Y.-S.; Yoon, C. W.; Lee, H. D.; Park, M.; Park, J. W. Chem. Commun. 2004, 1316
  103. Lee, J. K.; Lee, K.-B.; Kim, D. J.; Choi, I. S. Langmuir 2003, 19, 8141 https://doi.org/10.1021/la034859g
  104. Lee, J. K.; Chi, Y. S.; Choi, I. S. Langmuir 2004, 20, 3844 https://doi.org/10.1021/la049748b
  105. Collman, J. P.; Devaraj, N. K.; Chidesey, C. E. D. Langmuir 2004, 20, 1051 https://doi.org/10.1021/la0362977
  106. Persson, H. H. J.; Caseri, W. R.; Suter, U. W. Langmuir 2001, 17, 3643 https://doi.org/10.1021/la001265u
  107. Houseman, B. T.; Gawalt, E. S.; Mrksich, M. Langmuir 2003, 19, 1522 https://doi.org/10.1021/la0262304
  108. Smith, J. C.; Lee, K.-L.; Wang, Q.; Finn, M. G.; Johnson, J. E.; Mrksich, M.; Mirkin, C. A. Nano Lett. 2003, 3, 883 https://doi.org/10.1021/nl025956h
  109. Merrill, E. W. In Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications; Harris, J. M., Ed.; Plenum Press: New York, 1992; pp 199-220
  110. Chen, J.; Yoshida, M.; Maekawa, Y.; Tsubokawa, N. Polymer 2001, 42, 9361 https://doi.org/10.1016/S0032-3861(01)00523-7
  111. Zhu, S. S.; Carroll, P. J.; Swager, T. M. J. Am. Chem. Soc. 1996, 118, 8713 https://doi.org/10.1021/ja9619667
  112. Jennings, G. F.; Brantley, E. L. Adv. Mater. 2004, 16, 1983 https://doi.org/10.1002/adma.200400810
  113. Prucker, O.; Ruhe, J. Macromolecules 1998, 31, 592 https://doi.org/10.1021/ma970660x
  114. Huang, W. X.; Skanth, G.; Baker, G. L.; Bruening, M. L. Langmuir 2001, 17, 1731 https://doi.org/10.1021/la001325w
  115. Jones, D. M.; Huck, W. T. S. Adv. Mater. 2001, 13, 1256 https://doi.org/10.1002/1521-4095(200108)13:16<1256::AID-ADMA1256>3.0.CO;2-B
  116. Osborne, V. L.; Jones, D. M.; Huck, W. T. S. Chem. Commun. 2002, 1838
  117. Jones, D. M.; Brown, A. A.; Huck, W. T. S. Langmuir 2002, 18, 1265 https://doi.org/10.1021/la011365f
  118. Kim, D. J.; Kong, B.; Jung, Y. H.; Kim, K. S.; Kim, W.-J.; Lee, K.-B.; Kang, S. M.; Jeon, S. W.; Choi, I. S. Bull. Korean Chem. Soc. 2004, 25, 1629 https://doi.org/10.5012/bkcs.2004.25.11.1629
  119. Lee, S. B.; Koepsel, R. R.; Morley, S. W.; Matyjaszewski, K.; Sun, Y.; Russell, A. J. Biomacromolecules 2004, 5, 877 https://doi.org/10.1021/bm034352k
  120. Zhao, B.; Brittain, W. J. Macromolecules 2000, 33, 342 https://doi.org/10.1021/ma9910181
  121. Advincula, R.; Zhou, Q. G.; Park, M.; Wang, S. G.; Mays, J.; Sakellariou, G.; Pispas, S.; Hadjichristidis, N. Langmuir 2002, 18, 8672 https://doi.org/10.1021/la025962t
  122. Jordan, R.; Ulman, A.; Kang, J. F.; Rafailovich, M. H.; Sokolov, J. J. Am. Chem. Soc. 1999, 121, 1016 https://doi.org/10.1021/ja981348l
  123. Ingall, M. D. K.; Honeyman, C. H.; Mercure, J. V.; Bianconi, P. A.; Kunz, R. R. J. Am. Chem. Soc. 1999, 121, 3607 https://doi.org/10.1021/ja9833927
  124. Rutenberg, I. M.; Scherman, O. A.; Grubbs, R. H.; Jiang, W. R.; Garfunkel, E.; Bao, Z. J. Am. Chem. Soc. 2004, 126, 4062
  125. Watson, K. J.; Zhu, J.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 1999, 121, 462 https://doi.org/10.1021/ja983173l
  126. Kim, N. Y.; Jeon, N. L.; Choi, I. S.; Takami, S.; Harada, Y.; Finnie, K. R.; Girolami, G. S.; Nuzzo, R. G.; Whitesides, G. M.; Laibinis, P. E. Macromolecules 2000, 33, 2793 https://doi.org/10.1021/ma000046c
  127. Whitesell, J. K.; Chang, H. K. Science 1993, 261, 73 https://doi.org/10.1126/science.261.5117.73
  128. Kittredge, K. W.; Minton, M. A.; Fox, M. A.; Whitesell, J. K. Helv. Chim. Acta 2002, 85, 788 https://doi.org/10.1002/1522-2675(200203)85:3<788::AID-HLCA788>3.0.CO;2-R
  129. Kim, D. J.; Lee, K.-B; Chi, Y. S.; Kim, W.-J.; Paik, H.-j.; Choi, I. S. Langmuir 2004, 20, 7904 https://doi.org/10.1021/la048657b
  130. Bearinger, J. P.; Terrettaz, S.; Michel, R.; Tirelli, N.; Vogel, H.; Textor, M.; Hubbell, J. A. Nat. Mater. 2003, 2, 259 https://doi.org/10.1038/nmat851
  131. Jon, S.; Seong, J.; Khademhosseini, A.; Tran, T.-N. T.; Laibinis, P. E.; Langer, R. Langmuir 2003, 19, 9989 https://doi.org/10.1021/la034839e
  132. Ma, H.; Hyun, J.; Stiller, P.; Chilkoti, A. Adv. Mater. 2004, 16, 338 https://doi.org/10.1002/adma.200305830
  133. Jones, D. M.; Smith, J. R.; Huck, W. T. S.; Alexander, C. Adv. Mater. 2002, 14, 1130 https://doi.org/10.1002/1521-4095(20020816)14:16<1130::AID-ADMA1130>3.0.CO;2-7
  134. Kim, D. J.; Heo, J.-y.; Kim, K. S.; Choi, I. S. Macromol. Rapid Commun. 2003, 24, 517 https://doi.org/10.1002/marc.200390076
  135. Kaholek, M.; Lee, W.-K.; LaMattina, B.; Caster, K. C.; Zauscher, S. Nano Lett. 2004, 4, 373 https://doi.org/10.1021/nl035054w
  136. Xu, F. J.; Zhong, S. P.; Yung, L. Y. L.; Kang, E. T.; Neoh, K. G. Biomacromolecules 2004, 5, 2392 https://doi.org/10.1021/bm049675a
  137. Tretinnikov, O. N.; Kato, K.; Iwata, H. Langmuir 2004, 20, 6748 https://doi.org/10.1021/la049277t
  138. Gil, E. S.; Hudson, S. M. Prog. Polym. Sci. 2004, 29, 1173 https://doi.org/10.1016/j.progpolymsci.2004.08.003
  139. Kim, Y.-R.; Paik, H.-j.; Ober, C. K.; Coates, G. W.; Batt, C. A. Biomacromolecules 2004, 5, 889 https://doi.org/10.1021/bm0344147
  140. Harris, R. F.; Ricci, M. J.; Farrer, R. A.; Praino, J.; Miller, S. J.; Saleh, B. E. A.; Teich, M. C.; Fourkas, J. T. Adv. Mater. 2005, 17, 39 https://doi.org/10.1002/adma.200400311
  141. Liu, X. G.; Guo, S. W.; Mirkin, C. A. Angew. Chem. Int. Ed. 2003, 42, 4785 https://doi.org/10.1002/anie.200352309
  142. Jeon, N. L.; Choi, I. S.; Whitesides, G. M.; Kim, N. Y.; Laibinis, P. E.; Harada, Y.; Finnie, K. R.; Girolami, G. S.; Nuzzo, R. G. Appl. Phys. Lett. 1999, 75, 4201 https://doi.org/10.1063/1.125582
  143. Husemann, M.; Mecerreyes, D.; Hawker, C. J.; Hedrick, J. L.; Shah, R.; Abbott, N. L. Angew. Chem. Int. Ed. 1999, 38, 647 https://doi.org/10.1002/(SICI)1521-3773(19990301)38:5<647::AID-ANIE647>3.0.CO;2-0
  144. Granville, A. M.; Boyes, S. G.; Akgun, B.; Foster, M. D.; Brittain, W. J. Macromolecules 2004, 37, 2790 https://doi.org/10.1021/ma035915n
  145. Boyes, S. G.; Brittain, W. J.; Weng, X.; Chem, S. Z. D. Macromolecules 2002, 35, 4960 https://doi.org/10.1021/ma020109m
  146. Zhao, B.; Brittain, W. J. J. Am. Chem. Soc. 1999, 121, 3557 https://doi.org/10.1021/ja984428y
  147. Ziauddin, J.; Sabatini, D. N. Nature 2001, 411, 107 https://doi.org/10.1038/35075114
  148. Mrksich, M.; Whitesides, G. M. Trends Biotechnol. 1995, 12, 228
  149. Crooks, R. M.; Ricco, A. J. Acc. Chem. Res. 1998, 31, 219 https://doi.org/10.1021/ar970246h
  150. Bernard, A.; Fitzli, D.; Sonderegger, P.; Delamarche, E.; Michel, B.; Bosshard, H. R.; Biebuyck, H. Nat. Biotechnol. 2001, 19, 866 https://doi.org/10.1038/nbt0901-866
  151. Park, T. H.; Shuler, M. L. Biotechnol. Prog. 2003, 19, 243 https://doi.org/10.1021/bp020143k
  152. Raghavan, S.; Chen, C. S. Adv. Mater. 2004, 16, 1303 https://doi.org/10.1002/adma.200400594
  153. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Science 1997, 276, 1425 https://doi.org/10.1126/science.276.5317.1425
  154. Brock, A.; Chang, E.; Ho, C.-C.; LeDuc, P.; Jiang, X.; Whitesides, G. M.; Ingber, D. E. Langmuir 2003, 19, 1611 https://doi.org/10.1021/la026394k
  155. Tan, J. L.; Tien, J.; Pirone, D. M.; Gray, D. S.; Bhadriraju, K.; Chen, C. S. Proc. Natl. Acad. Sci. USA 2003, 100, 1484
  156. Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blümmel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P. ChemPhysChem 2004, 5, 383 https://doi.org/10.1002/cphc.200301014
  157. Hyun, J.; Ma, H.; Banerjee, P.; Cole, J.; Gonsalves, K.; Chilkoti, A. Langmuir 2002, 18, 2975 https://doi.org/10.1021/la015712x
  158. Lahann, J.; Balcells, M.; Rodon, T.; Lee, J.; Choi, I. S.; Jensen, K. F.; Langer, R. Langmuir 2002, 18, 3632 https://doi.org/10.1021/la011464t
  159. Berg, M. C.; Yang, S. Y.; Hammond, P. T.; Rubner, M. F. Langmuir 2004, 20, 1362 https://doi.org/10.1021/la0355489
  160. Lee, K.-B.; Kim, D. J.; Lee, Z.-W.; Woo, S. I.; Choi, I. S. Langmuir 2004, 20, 2531 https://doi.org/10.1021/la036209i
  161. Ostuni, E.; Kane, R.; Chen, C. S.; Ingber, D. E.; Whitesides, G. M. Langmuir 2000, 16, 7811 https://doi.org/10.1021/la000382m
  162. Hyun, J.; Ma, H.; Zhang, Z.; Beebe, T. P., Jr.; Chilkoti, A. Adv. Mater. 2003, 15, 576 https://doi.org/10.1002/adma.200304496
  163. Khademhosseini, A.; Jon, S.; Suh, K. Y.; Tran, T.-N. T.; Eng, G.; Yeh, J.; Seong, J.; Langer, R. Adv. Mater. 2003, 15, 1995 https://doi.org/10.1002/adma.200305433
  164. Yousaf, M. N.; Houseman, B. T.; Mrksich, M. Proc. Natl. Acad. Sci. USA 2001, 98, 5992 https://doi.org/10.1073/pnas.101112898
  165. Jiang, X.; Ferrigno, R.; Mrksich, M.; Whitesides, G. M. J. Am. Chem. Soc. 2003, 125, 2366 https://doi.org/10.1021/ja029485c
  166. Kim, H.; Doh, J.; Irvine, D. J.; Cohen, R. E.; Hammond, P. T. Biomacromolecules 2004, 5, 822 https://doi.org/10.1021/bm034341r
  167. Park, T. J.; Lee, K.-B.; Lee, S. J.; Park, J. P.; Lee, Z.-W.; Lee. S. Y.; Choi, I. S. J. Am. Chem. Soc. 2004, 126, 10512 https://doi.org/10.1021/ja047894y
  168. Lee, K.-B.; Lee, Y.-W.; Kim, D. J.; Lee, S. M.; Woo, S. I.; Kim, Y.; Kim, Y.-G.; Choi, I. S. Bull. Korean Chem. Soc. 2003, 24, 1702 https://doi.org/10.5012/bkcs.2003.24.11.1702
  169. Lee, K.-B.; Yoon, K. R.; Woo, S. I.; Choi, I. S. J. Pharm. Sci. 2003, 92, 933 https://doi.org/10.1002/jps.10556
  170. Kato, M.; Mrksich, M. Biochemistry 2004, 43, 2699 https://doi.org/10.1021/bi0352670
  171. Lee, K. Y.; Alsberg, E.; Hsiong, S.; Comisar, W.; Linderman, J.; Ziff, R.; Mooney, D. Nano Lett. 2004, 4, 1501 https://doi.org/10.1021/nl0493592
  172. Lee, K.-B.; Park, S.-J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M. Science 2002, 295, 1702 https://doi.org/10.1126/science.1067172
  173. Koo, L. Y.; Irvine, D. J.; Mayes, A. M.; Lauffenburger, D. A.; Griffith, L. G. J. Cell Sci. 2002, 115, 1423
  174. Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A.; Griffith, L. G. J. Cell Sci. 2000, 113, 1677
  175. J. Am. Chem. Soc. v.124 Kumar, J.K.;Oliver, J.S. https://doi.org/10.1021/ja0175237

Cited by

  1. Adsorption of Cysteine on Cu(110) Studied by Core-Level Photoelectron Spectroscopy vol.111, pp.35, 2007, https://doi.org/10.1021/jp072496d
  2. Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review vol.10, pp.9, 2009, https://doi.org/10.1021/bm900186s
  3. Double protein functionalized poly-ε-caprolactone surfaces: in depth ToF–SIMS and XPS characterization vol.23, pp.2, 2012, https://doi.org/10.1007/s10856-011-4527-9
  4. Electrochemical Release of Amine Molecules from Carbamate-Based, Electroactive Self-Assembled Monolayers vol.28, pp.1, 2012, https://doi.org/10.1021/la203420h
  5. Polymeric Functionalization of Cyclic Olefin Copolymer Surfaces with Nonbiofouling Poly(oligo(Ethylene Glycol) Methacrylate) vol.2, pp.7, 2013, https://doi.org/10.1002/ajoc.201300078
  6. Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing vol.26, pp.11, 2013, https://doi.org/10.4313/JKEM.2013.26.11.841
  7. Squish and CuAAC: Additive-Free Covalent Monolayers of Discrete Molecules in Seconds vol.29, pp.18, 2013, https://doi.org/10.1021/la400172w
  8. Effect of Surface Roughness on the Formation of Micro-Patterns by Soft Lithography vol.27, pp.12, 2014, https://doi.org/10.4313/JKEM.2014.27.12.871
  9. A Facile Method for Detection of Substituted Salicylic Acids Using Pyrenesulfonamide-Terminated Self-Assembled Monolayers on Silicon Oxide Surfaces vol.37, pp.5, 2016, https://doi.org/10.1002/bkcs.10740
  10. Stability of Agarose Film on Glass Slides under Biochemically Relevant Conditions vol.39, pp.9, 2018, https://doi.org/10.1002/bkcs.11554
  11. Biosurface Organic Chemistry: Interfacial Chemical Reactions for Applications to Nanobiotechnology and Biomedical Sciences vol.36, pp.24, 2005, https://doi.org/10.1002/chin.200524288
  12. Oberflächenreaktionen “nach Bedarf”: elektrochemische Steuerung von Reaktionen an selbstorganisierten Monoschichten vol.118, pp.30, 2006, https://doi.org/10.1002/ange.200601502
  13. Surface Reactions On Demand: Electrochemical Control of SAM-Based Reactions vol.45, pp.30, 2006, https://doi.org/10.1002/anie.200601502
  14. Direct grafting of ɛ-caprolactone on solid core/mesoporous shell silica spheres by surface-initiated ring-opening polymerization vol.107, pp.4, 2008, https://doi.org/10.1002/app.27369
  15. Surface-initiated ring-opening polymerization of p-dioxanone on Wang resin bead vol.46, pp.4, 2008, https://doi.org/10.1002/pola.22457
  16. Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces vol.18, pp.39, 2007, https://doi.org/10.1088/0957-4484/18/39/395602
  17. Esterification on solid support by surface-initiated ring-opening polymerization of ε-caprolactone from benzylic hydroxyl-functionalized Wang resin bead pp.10974628, 2009, https://doi.org/10.1002/app.29094
  18. A Facile Route to Triazole Dendrimers via Click Chemistry Linking Tripodal Acetylene and Dendrons vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.658
  19. Convergent Synthesis of Triazole Dendrimers via Click Chemistry Using Tripodal Core vol.26, pp.5, 2005, https://doi.org/10.5012/bkcs.2005.26.5.833
  20. Substrate-Dependent Surface-Induced Photoreaction of Organic Monolayers on Silver vol.26, pp.9, 2005, https://doi.org/10.5012/bkcs.2005.26.9.1427
  21. Formation of Thermoresponsive Gold Nanoparticle/PNIPAAm Hybrids by Surface-Initiated, Atom Transfer Radical Polymerization in Aqueous Media vol.206, pp.19, 2005, https://doi.org/10.1002/macp.200500268
  22. Uniform Grafting of Poly(1,5-dioxepan-2-one) by Surface-Initiated, Ring-Opening Polymerization vol.14, pp.2, 2005, https://doi.org/10.1007/bf03218510
  23. Chemical Modification of Si Nanowires for Bioconjugation vol.27, pp.1, 2005, https://doi.org/10.5012/bkcs.2006.27.1.111
  24. Dip-Pen Nanolithography Using the Amide-Coupling Reaction with Interchain Carboxylic Anhydride- Terminated Self-Assembled Monolayers vol.16, pp.8, 2005, https://doi.org/10.1002/adfm.200500796
  25. pH-Dependent Stability of Self-Assembled Monolayers on Gold vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1843
  26. Bioconjugation of Poly(poly(ethylene glycol) methacrylate)-Coated Iron Oxide Magnetic Nanoparticles for Magnetic Capture of Target Proteins vol.17, pp.4, 2009, https://doi.org/10.1007/bf03218689
  27. Sulfonation of Alkyl Phenyl Ether Self-Assembled Monolayers vol.26, pp.3, 2005, https://doi.org/10.1021/la902093x
  28. Label-free biological and chemical sensors vol.2, pp.9, 2005, https://doi.org/10.1039/c0nr00201a
  29. Direct, Noncovalent Coating of a Gold Surface with Polymeric Self-Assembled Monolayers vol.34, pp.12, 2005, https://doi.org/10.5012/bkcs.2013.34.12.3541
  30. Biosurfaces Fabricated by Polymerization-Induced Surface Self-Assembly vol.36, pp.42, 2005, https://doi.org/10.1021/acs.langmuir.0c02201
  31. Non‐Biofouling Performance and Binding Capabilities of Amylose Film Coated on Glass Surface vol.42, pp.9, 2005, https://doi.org/10.1002/bkcs.12356