DOI QR코드

DOI QR Code

Synthesis of Quinolines via Pd/C-Catalyzed Cyclization of 2-Aminobenzyl Alcohol with Ketones

  • Cho, Chan-Sik (Research Institute of Industrial Technology, Kyungpook National University) ;
  • Ren, Wen Xiu (Department of Applied Chemistry, College of Engineering, Kyungpook National University) ;
  • Shim, Sang-Chul (Department of Applied Chemistry, College of Engineering, Kyungpook National University)
  • Published : 2005.08.20

Abstract

Keywords

References

  1. Jones, G. Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: New York, 1984; Vol. 2, p 395
  2. Arcadi, A.; Chiarini, M.; Giuseppe, S. D.; Marinelli, F. Synlett 2003, 203, and references cited therein
  3. Cho, S. Y.; Ahn, J. H.; Ha, J. D.; Kang, S. K.; Baek, J. Y.; Han, S. S.; Shin, E. Y.; Kim, S. S.; Kim, K. R.; Cheon, H. G.; Choi, J.-K. Bull. Korean Chem. Soc. 2003, 24, 1455 https://doi.org/10.5012/bkcs.2003.24.10.1455
  4. Cho, C. S.; Kim, B. T.; Lee, M. J.; Kim, T.-J.; Shim, S. C. Angew. Chem., Int. Ed. 2001, 40, 958 https://doi.org/10.1002/1521-3773(20010302)40:5<958::AID-ANIE958>3.0.CO;2-4
  5. Cho, C. S.; Park, J. H.; Kim, T.-J.; Shim, S. C. Bull. Korean Chem. Soc. 2002, 23, 23 https://doi.org/10.5012/bkcs.2002.23.1.023
  6. Cho, C. S. Tetrahedron Lett. 2005, 46, 1415 https://doi.org/10.1016/j.tetlet.2005.01.034
  7. Cho, C. S.; Oh, B. H.; Shim, S. C. Tetrahedron Lett. 1999, 40, 1499 https://doi.org/10.1016/S0040-4039(98)02661-6
  8. Cho, C. S.; Oh, B. H.; Shim, S. C. J. Heterocycl. Chem. 1999, 36, 1175 https://doi.org/10.1002/jhet.5570360510
  9. Cho, C. S.; Kim, J. S.; Oh, B. H.; Kim, T.-J.; Shim, S. C. Tetrahedron 2000, 56, 7747 https://doi.org/10.1016/S0040-4020(00)00694-3
  10. Cho, C. S.; Oh, B. H.; Kim, J. S.; Kim, T.-J.; Shim, S. C. Chem. Commun. 2000, 1885
  11. Cho, C. S.; Kim, T. K.; Kim, B. T.; Kim, T.-J.; Shim, S. C. J. Organomet. Chem. 2002, 650, 65 https://doi.org/10.1016/S0022-328X(02)01170-1
  12. Cho, C. S.; Lee, N. Y.; Kim, T.-J.; Shim, S. C. J. Heterocyclic Chem. 2004, 41, 423 https://doi.org/10.1002/jhet.5570410320
  13. Murahashi, S.-I. Angew. Chem., Int. Ed. 1995, 34, 2443 https://doi.org/10.1002/anie.199524431
  14. Cho, C. S.; Lee, N. Y.; Kim, T.-J.; Shim, S. C. J. Heterocyclic Chem. 2004, 41, 409 https://doi.org/10.1002/jhet.5570410317
  15. Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. Tetrahedron Lett. 2002, 43, 7987 https://doi.org/10.1016/S0040-4039(02)01625-8
  16. Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. J. Org. Chem. 2001, 66, 9022
  17. Cho, C. S.; Kim, B. T.; Kim, H.-S.; Kim, T.-J.; Shim, S. C. Organometallics 2003, 22, 3608 https://doi.org/10.1021/om030307h
  18. Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. Chem. Commun. 2001, 2576
  19. Cho, C. S.; Kim, B. T.; Choi, H.-J.; Kim, T.-J.; Shim, S. C. Tetrahedron 2003, 59, 7997 https://doi.org/10.1016/j.tet.2003.08.027
  20. Motokura, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahedron Lett. 2004, 45, 6029 https://doi.org/10.1016/j.tetlet.2004.06.023
  21. Taguchi, K.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2005, 46, 4539 https://doi.org/10.1016/j.tetlet.2005.05.013
  22. Friedläender, P. Chem. Ber. 1882, 15, 2572 https://doi.org/10.1002/cber.188201502219
  23. Cheng, C.-C.; Yan, S.-J. Org. Reactions 1982, 28, 37
  24. Cho, C. S.; Lim, D. K.; Heo, N. H.; Kim, T.-J.; Shim, S. C. Chem. Commun. 2004, 104
  25. Cho, C. S.; Lim, D. K.; Zhang, J. Q.; Kim, T.-J.; Shim, S. C. Tetrahedron Lett. 2004, 45, 5653 https://doi.org/10.1016/j.tetlet.2004.05.112
  26. Zassinovich, G..; Mestroni, G.; Gladiali, S. Chem. Rev. 1992, 92, 1051 https://doi.org/10.1021/cr00013a015
  27. Bäckvall, J.-E.; Chowdhury, R. L.; Karlsson, U.; Wang, G. Perspectives in Coordination Chemistry; Williams, A. F.; Floriani, C.; Merbach, A. E., Eds.; VCH: New York, 1992; pp 463-486
  28. Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97 https://doi.org/10.1021/ar9502341
  29. Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599 https://doi.org/10.1021/cr9403695
  30. Palmer, M.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045 https://doi.org/10.1016/S0957-4166(99)00216-5
  31. Hsiao, Y.; Rivera, N. R.; Yasuda, N.; Hughes, D. L.; Reider, P. J. Org. Lett. 2001, 3, 1101 https://doi.org/10.1021/ol006785v
  32. Garrett, R. D.; Henze, H. R. J. Med. Chem. 1966, 9, 976

Cited by

  1. -Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles vol.110, pp.3, 2010, https://doi.org/10.1021/cr9002159
  2. Palladium-Based Nanocatalyst for One-Pot Synthesis of Polysubstituted Quinolines vol.5, pp.1, 2012, https://doi.org/10.1002/cctc.201200496
  3. Catalyst Free Indirect Friedländer Synthesis of Substituted Quinolines from Alcohols in PEG-400 vol.59, pp.4, 2012, https://doi.org/10.1002/jccs.201100404
  4. A Clean Synthesis of 1,4-Diarylquinoline Derivatives Catalyzed by TEBAC in Aqueous Media vol.54, pp.4, 2013, https://doi.org/10.1002/jccs.200700149
  5. Metal-free aerobic one-pot synthesis of substituted/annulated quinolines from alcohols via indirect Friedländer annulation vol.13, pp.37, 2015, https://doi.org/10.1039/C5OB01422K
  6. Ruthenium(II)-Catalyzed Hydrogen Transfer/Annulation Cascade Processes between Alcohols and 2-Nitrobenzaldehydes vol.357, pp.2-3, 2015, https://doi.org/10.1002/adsc.201400898
  7. -Heterocyclization vol.17, pp.2, 2016, https://doi.org/10.1002/tcr.201600083
  8. Straightforward synthesis of quinolines from enones and 2-aminobenzyl alcohols using an iridium-catalyzed transfer hydrogenative strategy vol.16, pp.31, 2018, https://doi.org/10.1039/C8OB01321G
  9. A review on transition-metal mediated synthesis of quinolines vol.130, pp.6, 2018, https://doi.org/10.1007/s12039-018-1466-8
  10. RuCl2(dmso)4 Catalyzes the Solvent-Free Indirect Friedländer Synthesis of Polysubstituted Quinolines from Alcohols vol.2007, pp.10, 2007, https://doi.org/10.1002/ejoc.200600945
  11. A Ruthenium-Catalyzed Approach to the Friedländer Quinoline Synthesis vol.2008, pp.9, 2008, https://doi.org/10.1002/ejoc.200701001
  12. Synthesis of Quinolines Through Acceptorless Dehydrogenative Coupling Catalyzed by Rhenium PN(H)P Complexes pp.18645631, 2019, https://doi.org/10.1002/cssc.201802636
  13. Ruthenium-Catalyzed Synthesis of 3-Substituted Quinolines from 2-Aminobenzyl Alcohol and Aldehydes vol.26, pp.12, 2005, https://doi.org/10.5012/bkcs.2005.26.12.2038
  14. Synthesis of Quinolines via Pd/C-Catalyzed Cyclization of 2-Aminobenzyl Alcohol with Ketones. vol.37, pp.1, 2005, https://doi.org/10.1002/chin.200601161
  15. A recyclable palladium-catalyzed modified Friedlander quinoline synthesis vol.692, pp.19, 2005, https://doi.org/10.1016/j.jorganchem.2007.06.022
  16. Quinoline, quinazoline and acridone alkaloids vol.25, pp.1, 2005, https://doi.org/10.1039/b612168n
  17. Lithium tert-butoxide mediated a-alkylation of ketones with primary alcohols under transition-metal-free conditions vol.3, pp.21, 2005, https://doi.org/10.1039/c3ra23221b
  18. An N-heterocyclic carbene-catalyzed approach to the indirect Friedländer quinoline synthesis vol.4, pp.95, 2005, https://doi.org/10.1039/c4ra07858f
  19. Pd‐Catalyzed Hydrogen‐Transfer Reactions from Alcohols to C=C, C=O, and C=N Bonds vol.2015, pp.26, 2005, https://doi.org/10.1002/ejoc.201500401