DOI QR코드

DOI QR Code

Microwave Synthesis of a Nanoporous Hybrid Material, Chromium Trimesate

  • Jhung, Sung-Hwa (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Lee, Jin-Ho (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Chang, Jong-San (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology)
  • Published : 2005.06.20

Abstract

Keywords

References

  1. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705 https://doi.org/10.1038/nature01650
  2. James, S. L. Chem. Soc. Rev. 2003, 32, 276 https://doi.org/10.1039/b200393g
  3. Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem. Intl. Ed. 2004, 43, 2334 https://doi.org/10.1002/anie.200300610
  4. Ferey, G. Chem. Mater. 2001, 13, 3084 https://doi.org/10.1021/cm011070n
  5. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217 https://doi.org/10.1021/ar040163i
  6. Ferey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surble, S.; Dutour, J.; Margiolaki, I. Angew. Chem. Intl. Ed. 2004, 43, 6296 https://doi.org/10.1002/anie.200460592
  7. Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.;Hwang, J.-S. Catal. Survey Asia 2004, 8, 91 https://doi.org/10.1023/B:CATS.0000026990.25778.a8
  8. Jhung, S. H.; Chang, J.-S.; Hwang, J. S.; Park, S.-E. Micropor. Mesopor. Mater. 2003, 64, 33 https://doi.org/10.1016/S1387-1811(03)00501-8
  9. Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Hwang, J.-S.; Park, S.-E.; Chang, J.-S. Micropor. Mesopor. Mater. 2005, 80, 147 https://doi.org/10.1016/j.micromeso.2004.11.013
  10. Kang, K.-K.; Park, C.-H.; Ahn, W.-S. Catal. Lett. 1999, 59, 45 https://doi.org/10.1023/A:1019004101326
  11. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Park, S.-E. J. Mater. Chem. 2004, 14, 280 https://doi.org/10.1039/b309142b
  12. Hwang, Y. K.; Chang, J.-S.; Park, S.-E.; Kim, D. S.; Kwon, Y.-U.; Jhung, S. H.; Hwang, J.-S.; Park, M.-S. Angew. Chem. Intl. Ed. 2005, 44, 557
  13. Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P. A. Chem. Mater. 1999, 11, 882 https://doi.org/10.1021/cm9803859
  14. Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res. 2002, 35, 717 https://doi.org/10.1021/ar010074v
  15. Yoon, J. W.; Jhung, S. H.; Kim, Y. H.; Park, S.-E.; Chang, J.-S. Bull. Korean Chem. Soc. 2005, 26, 558 https://doi.org/10.5012/bkcs.2005.26.4.558
  16. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Greneche, J.-M.; Ferey, G.; Cheetham, A. K. J. Phys. Chem. B 2005, 109, 845 https://doi.org/10.1021/jp046188g
  17. Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666 https://doi.org/10.1021/ja049408c
  18. Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem. Intl. Ed. 2004, 43, 5033 https://doi.org/10.1002/anie.200460712
  19. Lee, E. Y.; Suh, M. P. Angew. Chem. Intl. Ed. 2004, 43, 2798 https://doi.org/10.1002/anie.200353494
  20. Conner, W. C.; Tompsett, G.; Lee, K.-H.; Yngvesson, K. S. J. Phys. Chem. B 2004, 108, 13913 https://doi.org/10.1021/jp037358c

Cited by

  1. Accelerated Syntheses of Porous Isostructural Lanthanide-Benzenetricarboxylates (Ln-BTC) Under Ultrasound at Room Temperature vol.2010, pp.31, 2010, https://doi.org/10.1002/ejic.201000541
  2. Syntheses of Metal–Organic Frameworks and Aluminophosphates under Microwave Heating: Quantitative Analysis of Accelerations vol.11, pp.10, 2011, https://doi.org/10.1021/cg200594e
  3. Microwave-Assisted Synthesis of Metal–Organic Frameworks vol.40, pp.2, 2011, https://doi.org/10.1039/C0DT00708K
  4. Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions vol.40, pp.40, 2011, https://doi.org/10.1039/c1dt10826c
  5. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites vol.112, pp.2, 2012, https://doi.org/10.1021/cr200304e
  6. Towards efficient polyoxometalate encapsulation in MIL-100(Cr): influence of synthesis conditions vol.36, pp.4, 2012, https://doi.org/10.1039/c2nj20587d
  7. Separation of CO2–CH4 mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches vol.41, pp.14, 2012, https://doi.org/10.1039/c2dt12102f
  8. Instant MOFs: continuous synthesis of metal–organic frameworks by rapid solvent mixing vol.48, pp.86, 2012, https://doi.org/10.1039/c2cc34493a
  9. -MIL-53(Al) microneedles and nanorodsvia coordination modulation vol.15, pp.4, 2013, https://doi.org/10.1039/C2CE26586A
  10. Hydrogen Storage in Metal-Organic Frameworks vol.23, pp.2, 2013, https://doi.org/10.1007/s10904-012-9779-4
  11. Synthesis of metal-organic frameworks: A mini review vol.30, pp.9, 2013, https://doi.org/10.1007/s11814-013-0140-6
  12. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology vol.21, pp.6, 2014, https://doi.org/10.1007/s10934-014-9851-2
  13. Fast and continuous processing of a new sub-micronic lanthanide-based metal–organic framework vol.38, pp.4, 2014, https://doi.org/10.1039/C3NJ01371E
  14. Continuous-flow hydrothermal synthesis for the production of inorganic nanomaterials vol.373, pp.2057, 2015, https://doi.org/10.1098/rsta.2015.0015
  15. Large-scale continuous hydrothermal production and activation of ZIF-8 vol.51, pp.64, 2015, https://doi.org/10.1039/C5CC04636J
  16. Covalent Chemistry beyond Molecules vol.138, pp.10, 2016, https://doi.org/10.1021/jacs.5b10666
  17. Scalable simultaneous activation and separation of metal–organic frameworks vol.6, pp.7, 2016, https://doi.org/10.1039/C5RA24994E
  18. Microwave activation as an alternative production of metal-organic frameworks vol.65, pp.9, 2016, https://doi.org/10.1007/s11172-016-1559-9
  19. New synthetic routes towards MOF production at scale vol.46, pp.11, 2017, https://doi.org/10.1039/C7CS00109F
  20. aromatic hydrocarbons by Co-CUK-1: a combined experimental and theoretical assessment vol.46, pp.46, 2017, https://doi.org/10.1039/C7DT03304D
  21. Synthesis of potassium niobates by the microwave-assisted solvothermal method vol.97, pp.1757-899X, 2015, https://doi.org/10.1088/1757-899X/97/1/012001
  22. vol.108, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/108/4/042104
  23. Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis vol.6, pp.25, 2018, https://doi.org/10.1039/C8TA02919A
  24. Microwave Synthesis of Hybrid Inorganic–Organic Porous Materials: Phase-Selective and Rapid Crystallization vol.12, pp.30, 2006, https://doi.org/10.1002/chem.200600270
  25. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability vol.19, pp.1, 2007, https://doi.org/10.1002/adma.200601604
  26. Some suggested perspectives for multifunctional hybrid porous solids pp.23, 2009, https://doi.org/10.1039/b817360p
  27. Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis vol.19, pp.10, 2009, https://doi.org/10.1002/adfm.200801130
  28. Effect of Water Concentration and Acidity on the Synthesis of Porous Chromium Benzenedicarboxylates vol.2010, pp.7, 2010, https://doi.org/10.1002/ejic.200901064
  29. Synthesis of isostructural porous metal-benzenedicarboxylates: Effect of metal ions on the kinetics of synthesis vol.12, pp.10, 2010, https://doi.org/10.1039/b927113a
  30. Rapid syntheses of a metal–organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses vol.12, pp.11, 2010, https://doi.org/10.1039/b921558a
  31. Microwave Synthesis of a Porous Metal-Organic Framework, Zinc Terephthalate MOF-5 vol.27, pp.10, 2005, https://doi.org/10.5012/bkcs.2006.27.10.1523
  32. Size Control of Silicone Particles Using Sonochemical Approaches vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2401
  33. Hybrid porous solids: past, present, future vol.37, pp.1, 2008, https://doi.org/10.1039/b618320b
  34. Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3 under Ultrasound vol.30, pp.12, 2005, https://doi.org/10.5012/bkcs.2009.30.12.2921
  35. Facile Purification of Porous Metal Terephthalates with Ultrasonic Treatment in the Presence of Amides vol.15, pp.43, 2005, https://doi.org/10.1002/chem.200902036
  36. Synthesis of a Metal–Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study vol.16, pp.3, 2010, https://doi.org/10.1002/chem.200902382
  37. Selective Removal of N‐Heterocyclic Aromatic Contaminants from Fuels by Lewis Acidic Metal–Organic Frameworks vol.123, pp.18, 2005, https://doi.org/10.1002/ange.201100050
  38. Selective Removal of N‐Heterocyclic Aromatic Contaminants from Fuels by Lewis Acidic Metal–Organic Frameworks vol.50, pp.18, 2011, https://doi.org/10.1002/anie.201100050
  39. Synthesis of isostructural metal–organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions vol.173, pp.3, 2005, https://doi.org/10.1016/j.cej.2011.08.037
  40. Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation vol.152, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2011.11.025
  41. 리뷰: MOF의 구조, 합성 및 응용 vol.17, pp.4, 2014, https://doi.org/10.9766/kimst.2014.17.4.510
  42. Multi-scale crystal engineering of metal organic frameworks vol.307, pp.2, 2005, https://doi.org/10.1016/j.ccr.2015.06.008
  43. Recent Progress on Metal-Organic Framework Membranes for Gas Separations: Conventional Synthesis vs. Microwave-Assisted Synthesis vol.27, pp.1, 2005, https://doi.org/10.14579/membrane_journal.2017.27.1.1
  44. Metal‐Organic Framework Nanocrystals vol.3, pp.26, 2005, https://doi.org/10.1002/slct.201801423
  45. Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks vol.4, pp.2, 2005, https://doi.org/10.1039/c8re00228b
  46. Metal Organic Frameworks (MOFs) and ultrasound: A review vol.52, pp.None, 2005, https://doi.org/10.1016/j.ultsonch.2018.11.004
  47. Synthesis and effect of metal-organic frame works on CO2 adsorption capacity at various pressures: A contemplating review vol.31, pp.3, 2020, https://doi.org/10.1177/0958305x19865352
  48. Opportunities and critical factors of porous metal-organic frameworks for industrial light olefins separation vol.4, pp.7, 2005, https://doi.org/10.1039/d0qm00186d
  49. Research Progress on Metal-Organic Framework Composites in Chemical Sensors vol.50, pp.4, 2005, https://doi.org/10.1080/10408347.2019.1642732
  50. Porous metal-organic frameworks for methane storage and capture: status and challenges vol.36, pp.3, 2005, https://doi.org/10.1016/s1872-5805(21)60034-3
  51. Syntheses, design strategies, and photocatalytic charge dynamics of metal-organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes vol.11, pp.12, 2005, https://doi.org/10.1039/d0cy02275f
  52. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future vol.3, pp.3, 2005, https://doi.org/10.1088/2516-1083/abf1ce
  53. Hazard Evaluation of Metal-Organic Framework Synthesis and Scale-up: A Laboratory Safety Perspective vol.28, pp.5, 2005, https://doi.org/10.1021/acs.chas.1c00044
  54. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications vol.281, pp.None, 2005, https://doi.org/10.1016/j.chemosphere.2021.130717
  55. Metal–organic framework-based sorbents in analytical sample preparation vol.445, pp.None, 2021, https://doi.org/10.1016/j.ccr.2021.214107
  56. Recent advancements in MOFs synthesis and their green applications vol.47, pp.4, 2005, https://doi.org/10.1016/j.ijhydene.2021.10.180
  57. Metal organic frameworks for electrochemical sensor applications: A review vol.204, pp.no.pc, 2022, https://doi.org/10.1016/j.envres.2021.112320
  58. Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review vol.810, pp.None, 2005, https://doi.org/10.1016/j.scitotenv.2021.152279