DOI QR코드

DOI QR Code

Tailoring the Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence of 2-(2'-Hydroxyphenyl)benzoxazole Derivatives

  • Seo, Jang-Won (Organic Nano-Photonics Laboratory, School of Materials Science & Engineering, Seoul National University) ;
  • Kim, Se-Hoon (Organic Nano-Photonics Laboratory, School of Materials Science & Engineering, Seoul National University) ;
  • Park, Sang-Hyuk (Organic Nano-Photonics Laboratory, School of Materials Science & Engineering, Seoul National University) ;
  • Park, Soo-Young (Organic Nano-Photonics Laboratory, School of Materials Science & Engineering, Seoul National University)
  • 발행 : 2005.11.20

초록

The excited-state intramolecular proton transfer (ESIPT) fluorescence in the 2-(2'-hydroxyphenyl)benzoxazole (HBO) derivatives with different electron donor and acceptor substituents was studied by spectroscopic and theoretical methods. Changes in the electronic transition, energy levels, and orbital diagrams of HBO analogues were investigated by the semi-empirical molecular orbital calculation and were correlated with the experimental spectral position of ESIPT keto emission. It was found that the presence of substituents, regardless of their nature, resulted in the red-shifted absorption relative to HBO. However, the spectral change of the ESIPT fluorescence was differently affected by the nature of substituent: hypsochromic shift with electron donor and bathochromic shift with electron acceptor.

키워드

참고문헌

  1. Abou-Zied, O. K.; Jimenez, R.; Thompson, E. H. Z.; Millar, D. P.; Romesberg, F. E. J. Phys. Chem. A 2002, 106, 3665 https://doi.org/10.1021/jp013915o
  2. Choi, J. R.; Jeoung, S. C.; Cho, D. W. Bull. Korean Chem. Soc. 2003, 24, 1675 https://doi.org/10.5012/bkcs.2003.24.11.1675
  3. Kim, S.; Jang, D. W.; Park, S. Y.; Kim, K.; Jin, J.-I. Bull. Korean Chem. Soc. 2001, 22, 1407
  4. Kim, S.; Park, S. Y. Adv. Mater. 2003, 15, 1341 https://doi.org/10.1002/adma.200305050
  5. Tong, H.; Zhou, G.; Wang, L.; Jing, X.; Wang, F.; Zhang, J. Tetrahedron Lett. 2003, 44, 13107 https://doi.org/10.1016/S0040-4039(02)02504-2
  6. Acuna, A. U.; Costela, A.; Munoz, J. M. J. Phys. Chem. 1986, 90, 2807 https://doi.org/10.1021/j100404a005
  7. Keck, J.; Kramer, H. E. A.; Port, H.; Hirsch, T.; Fischer, P.; Rytz, G. J. Phys. Chem. 1996, 100, 14468 https://doi.org/10.1021/jp961081h
  8. Chou, P. T.; Martinez, M. L.; Clements, J. H. J. Phys. Chem. 1993, 97, 2618 https://doi.org/10.1021/j100113a024
  9. Klymchenko, A. S.; Demchenko, A. P. J. Am. Chem. Soc. 2002, 124, 12372 2618 https://doi.org/10.1021/ja027669l
  10. Hillebrand, S.; Segala, M.; Buckup, T.; Correia, R. R. B.; Horowitz, F.; Stefani, V. Chem. Phys. 2001, 273, 1 https://doi.org/10.1016/S0301-0104(01)00469-4
  11. Mordzinski, A.; Grabowska, A.; Kuhnle, W.; Krowszynski, A. Chem. Phys. Lett. 1983, 101, 291 https://doi.org/10.1016/0009-2614(83)87015-8
  12. Kauffman, J. M.; Bajwa, G. S. J. Heterocyclic. Chem. 1993, 30, 1613 https://doi.org/10.1002/jhet.5570300626
  13. Segala, M.; Domingues Jr., N. S.; Livotto, P. R.; Stefani, V. J. Chem. Soc., Perkin Trans. 1999, 2, 1123
  14. Doroshenko, A. O.; Posokhov, E. A.; Verezubova, A. A.; Ptyagina, L. M. J. Phys. Org. Chem. 2000, 13, 253 https://doi.org/10.1002/1099-1395(200005)13:5<253::AID-POC238>3.0.CO;2-D
  15. Doroshenko, A. O.; Posokhov, E. A.; Verezubova, A. A.; Ptyagina, L. M.; Skripkina, V. T.; Shershukov, V. M. Photochem. Photobiol. Sci. 2002, 1, 92 https://doi.org/10.1039/b107255m
  16. Rampey, M. E.; Halkyard, C. E.; Williams, A. R.; Angel, A. J.; Hurst, D. R.; Townsend, J. D.; Finefrock, A. E.; Beam, C. F.;Studer-Martinez, S. L. Photochem. Photobiol. 1999, 70(2), 176 https://doi.org/10.1111/j.1751-1097.1999.tb07987.x
  17. Ouyang, J.; Ouyang, C.; Fujii, Y.; Nakano, Y.; Shoda, T.; Nagano, T. J. Heterocyclic Chem. 2004, 41, 359 https://doi.org/10.1002/jhet.5570410309
  18. Kim, S.; Park, S. Y. Bull. Korean Chem. Soc. 1999, 20, 473
  19. Seo, J.; Kim, S.; Park, S. Y. J. Am. Chem. Soc. 2004, 126, 11154 https://doi.org/10.1021/ja047815i
  20. LeGourrierec, D.; Kharlanov, V. A.; Brown, R. G.; Rettig, W. J. Photochem. Photobiol. A: Chem., 2000, 130, 101 https://doi.org/10.1016/S1010-6030(99)00206-3
  21. Brewster, K.; Chittenden, R. A.; Harrison, J. M.; Inch, T. D.; Brown. C. J. Chem. Soc., Perkin Trans. 1 1976, 12, 1291
  22. Hamal, S.; Hirayama, F. J. Phys. Chem. 1983, 87, 83 https://doi.org/10.1021/j100224a020
  23. Klessinger, M.; Michl, J. Excited States and Photochemistry of Organic Molecules; VCH: New York, 1995
  24. Nagaoka, S.; Nakamura, A.; Nagashima, U. J. Photochem. Photobiol. A 2002, 54, 23

피인용 문헌

  1. Application of excited-state intramolecular proton transfer (ESIPT) principle to functional polymeric materials vol.16, pp.5, 2008, https://doi.org/10.1007/BF03218534
  2. A White-Light-Emitting Molecule: Frustrated Energy Transfer between Constituent Emitting Centers vol.131, pp.39, 2009, https://doi.org/10.1021/ja902533f
  3. Synthesis of New ESIPT-Fluorescein: Photophysics of pH Sensitivity and Fluorescence vol.116, pp.1, 2012, https://doi.org/10.1021/jp2073123
  4. Strategic emission color tuning of highly fluorescent imidazole-based excited-state intramolecular proton transfer molecules vol.14, pp.25, 2012, https://doi.org/10.1039/c2cp23894b
  5. Synthesis and Photo-Physical Characteristics of ESIPT Inspired 2-Substituted Benzimidazole, Benzoxazole and Benzothiazole Fluorescent Derivatives vol.22, pp.1, 2012, https://doi.org/10.1007/s10895-011-0962-8
  6. Synthesis, characterization and antimicrobial activity of 2-(5-H/Me/F/Cl/NO2-1H-benzimidazol-2-yl)-benzene-1,4-diols and some transition metal complexes vol.9, pp.5, 2012, https://doi.org/10.1007/s13738-012-0098-z
  7. Rapid Detection of Hydrogen Peroxide Based on Aggregation Induced Ratiometric Fluorescence Change vol.15, pp.4, 2013, https://doi.org/10.1021/ol4000845
  8. A Combined Experimental and DFT-TDDFT Study of the Excited-State Intramolecular Proton Transfer (ESIPT) of 2-(2′-Hydroxyphenyl) Imidazole Derivatives vol.23, pp.5, 2013, https://doi.org/10.1007/s10895-013-1201-2
  9. Hydroxyphenyl-Substituted Benzophosphole Oxides: Impact of the Intramolecular Hydrogen Bond on the Fluorescence Properties vol.3, pp.2, 2014, https://doi.org/10.1002/ajoc.201300227
  10. Diorgano-Gallium and -Indium Complexes Derived from Benzoazole Ligands: Synthesis, Characterization, Photoluminescence, and Computational Studies vol.32, pp.1, 2013, https://doi.org/10.1021/om300855x
  11. ]pyridine in Rigid Matrices by Substitution Effect vol.78, pp.6, 2013, https://doi.org/10.1021/jo302711t
  12. Fluorescence emissions of imide compounds and end-capped polyimides enhanced by intramolecular double hydrogen bonds vol.17, pp.45, 2015, https://doi.org/10.1039/C5CP05055C
  13. Small heterocycles as highly luminescent building blocks in the solid state for organic synthesis vol.40, pp.3, 2016, https://doi.org/10.1039/C5NJ02943K
  14. Tuning ESIPT fluorophores into dual emitters vol.7, pp.6, 2016, https://doi.org/10.1039/C5SC04826E
  15. Effect of Different Substituted Groups on Excited-State Intramolecular Proton Transfer of 1-(Acylamino)-anthraquinons vol.121, pp.27, 2017, https://doi.org/10.1021/acs.jpcc.7b01726
  16. 2-Phenylbenzoxazole derivatives: a family of robust emitters of solid-state fluorescence vol.16, pp.7, 2017, https://doi.org/10.1039/C7PP00112F
  17. Effects of different substituents of methyl 5-R-salicylates on the excited state intramolecular proton transfer process vol.20, pp.6, 2018, https://doi.org/10.1039/C7CP06987A
  18. Management of transition dipoles in organic hole-transporting materials under solar irradiation for perovskite solar cells vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-06998-1
  19. New fluorescent elastomeric materials based on synthetic and natural epoxidized rubbers vol.109, pp.1, 2008, https://doi.org/10.1002/app.28114
  20. Time-dependent DFT-PCM investigation of the photophysics of ESIPT-exhibiting benzazole dyes vol.108, pp.13, 2008, https://doi.org/10.1002/qua.21700
  21. Fluorescence emission modulation in singlefluoroforic submicro-sized silica particles vol.52, pp.3, 2009, https://doi.org/10.1007/s10971-009-2075-2
  22. Synthesis, Photophysical, and Electroluminescent Device Properties of Zn(II)-Chelated Complexes Based on Functionalized Benzothiazole Derivatives vol.19, pp.10, 2009, https://doi.org/10.1002/adfm.200801122
  23. Experimental and theoretical investigation of long-wavelength fluorescence emission in push–pull benzazoles: intramolecular proton transfer or charge transfer in the excited state? vol.21, pp.8, 2019, https://doi.org/10.1039/C8CP05186K
  24. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  25. TD-DFT Study of Excited-State Intramolecular Proton Transfer (ESIPT) of 2-(1,3-benzothiazol-2-yl)-5-(N,N-diethylamino)Phenol with Benzoxazole and Benzimidazole Analogues vol.18, pp.None, 2005, https://doi.org/10.1016/j.procs.2013.05.244
  26. Crystal structure of 2-(4-diethylamino-2-hydroxyphenyl)-benzoxazole, C17H18N2O2 vol.228, pp.1, 2013, https://doi.org/10.1524/ncrs.2013.0063
  27. Polyimide and Imide Compound Exhibiting Bright Red Fluorescence with Very Large Stokes Shifts via Excited-State Intramolecular Proton Transfer II. Ultrafast Proton Transfer Dynamics in the Excited Sta vol.49, pp.5, 2016, https://doi.org/10.1021/acs.macromol.5b02224
  28. A theoretical exploration and regulating about the excited state process for 2‐(4‐(diphenylamino)phenyl)‐3‐hydroxy‐4H‐chromen‐4‐one system vol.32, pp.12, 2019, https://doi.org/10.1002/poc.4010
  29. Towards NIR‐Active Hydroxybenzazole (HBX)‐Based ESIPT Motifs: A Recent Research Trend vol.5, pp.6, 2005, https://doi.org/10.1002/slct.201904558