DOI QR코드

DOI QR Code

Metallothionein Induces Site-specific Cleavages in tRNAPhe

  • Published : 2005.06.20

Abstract

It is known that metallothionein (MT) plays a role in the scavenging of free radicals, which is produced under various stress conditions. MT may function as an antioxidant that protects against oxidative damage of DNA, protein, and lipid induced by superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide, and peroxynitrite. This study was undertaken to test the hypothesis that MT also protects from RNA damage induced by peroxynitrite, an important reactive nitrogen species that causes a diversity of pathological processes. A cell-free system was used. RNA damage was detected by the mobility of $tRNA^{Phe}$ in electrophoresis. Cleavages on tRNA were not induced by 3-morpholinosydnomine, which produces peroxynitrite directly. MT induced tRNA damage which was site specific.

Keywords

References

  1. Kagi, J. H. R.; Schaffer, A. Biochemistry 1988, 27, 8509 https://doi.org/10.1021/bi00423a001
  2. Koh, M.; Kim, H.-J. Bull. Korean Chem. Soc. 2001, 22, 362
  3. Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. Arch. Biochem. Biophys. 1991, 288, 481 https://doi.org/10.1016/0003-9861(91)90224-7
  4. Pryor, W. A.; Jin, X.; Squadrito, G. L. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 11173
  5. Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. J. Biol. Chem. 1991, 266, 4244
  6. Thomson, L.; Trujillo, M.; Telleri, R.; Radi, R. Arch. Biochem. Biophys. 1995, 319, 491 https://doi.org/10.1006/abbi.1995.1321
  7. King, P. A.; Anderson, V. E.; Edwards, J. O.; Gustafson, G.; Plumb, R. C.; Suggs, J. W. J. Am. Chem. Soc. 1992, 114, 5430 https://doi.org/10.1021/ja00039a068
  8. Kim, Y.-M.; Han, S. Bull. Korean Chem. Soc. 2004, 25, 711 https://doi.org/10.5012/bkcs.2004.25.5.711
  9. Schieke, S. M.; Briviba, K.; Klotz, L. O.; Sies, H. FEBS Lett. 1999, 448, 301 https://doi.org/10.1016/S0014-5793(99)00372-5
  10. Jope, R. S.; Zhang, L.; Song, L. Arch. Biochem. Biophys. 2000, 376, 365 https://doi.org/10.1006/abbi.2000.1728
  11. Borutaite, V.; Morkuniene, R.; Brown, G. C. Biochim. Biophys. Acta 1999, 1453, 41 https://doi.org/10.1016/S0925-4439(98)00082-9
  12. Cassina, A. M.; Hodara, R.; Souza, J. M.; Thomson, L.; Castro, L.; Ischiropoulos, H.; Freeman, B. A.; Radi, R. J. Biol. Chem. 2000, 275, 21409 https://doi.org/10.1074/jbc.M909978199
  13. Cai, L.; Klein, J. B.; Kang, Y. J. J. Biol. Chem. 2000, 275, 38957 https://doi.org/10.1074/jbc.C000593200
  14. Hermann, M.; Kapiotis, S.; Hofbauer, R.; Exner, M.; Seelos, C.; Held, I.; Gmeiner, B. FEBS Lett. 1999, 445, 212 https://doi.org/10.1016/S0014-5793(99)00043-5
  15. Donis-Keller, H.; Maxam, A. M.; Gilbert, W. Nucleic Acids Res. 1977, 4, 2527 https://doi.org/10.1093/nar/4.8.2527
  16. D'Alessio, J. M. In Gel Electrophoresis of Nucleic Acids; Rickwood, D.; Hames, B. D., Eds.; IRL press: Oxford, U. K., 1982; p 173
  17. Kim, H.-K.; Yang, C.-H. Bull. Korean Chem. Soc. 2004, 25, 1769 https://doi.org/10.5012/bkcs.2004.25.12.1769
  18. Graham, A.; Hogg, N.; Kalyanaraman, B.; O'Leary, V.; Darley-Usmar, V.; Moncada, S. FEBS Lett. 1993, 385, 63 https://doi.org/10.1016/0014-5793(96)00347-X
  19. Yermilov, V.; Yoshie, Y.; Rubio, J.; Ohshima, H. FEBS Lett. 1996, 399, 67 https://doi.org/10.1016/S0014-5793(96)01288-4
  20. Grace, S. C.; Salgo, M. G.; Pryor, W. A. FEBS Lett. 1998, 426, 24 https://doi.org/10.1016/S0014-5793(98)00298-1
  21. Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. Arch. Biochem. Biophys. 1991, 288, 481 https://doi.org/10.1016/0003-9861(91)90224-7
  22. Mates, J. M.; Sanchez-Jimenez, F. M. Int. J. Biochem. Cell Biol. 2000, 32, 157 https://doi.org/10.1016/S1357-2725(99)00088-6
  23. Salgo, M. G.; Stone, K.; Squadrto, G. L.; Battista, J. R.; Pryor, W. A. Biochem. Biophys. Res. Commun. 1995, 210, 1025 https://doi.org/10.1006/bbrc.1995.1759
  24. Salgo, M. G.; Pryor, W. A. Arch. Biochem. Biophys. 1996, 333, 482 https://doi.org/10.1006/abbi.1996.0418
  25. Raoul, S.; Berger, M.; Buchki, G. W.; Joshi, P. C.; Morin, B.; Weinfeld, M.; Cadet, J. J. Chem. Soc. Perkin Trans. 1996, 2, 371
  26. Douki, T.; Cadet, J. Free Radical Res. Commun. 1996, 24, 369 https://doi.org/10.3109/10715769609088035
  27. Kim, S. Y.; Lee, J. H.; Yang, E. S.; Kil, I. S.; Park, J.-W. Biochem. Biophys. Res. Commun. 2003, 301, 671 https://doi.org/10.1016/S0006-291X(03)00018-4
  28. Masuda, M.; Nishino, H.; Ohshima, H. Chem.-Biol. Interact. 2002, 139, 187 https://doi.org/10.1016/S0009-2797(01)00299-X
  29. Min, K.-S.; Nishida, K.; Nakahara, Y.; Onosaka, S. In Metallothionein IV; Klaassen, C., Ed.; Birkhauser Verlag: Basel, Switzerland, 1999; p 529
  30. Muller, T.; Schuckelt, R.; Jaenicke, L. Arch. Toxicol. 1991, 65, 20 https://doi.org/10.1007/BF01973498
  31. Carri, M. T.; Baliagzo, F.; Ciriolo, M. R.; Rotilio, G. FEBS Lett. 1991, 278, 263 https://doi.org/10.1016/0014-5793(91)80131-L
  32. Vasak, M.; Worgotter, E.; Wagner, G.; Kagi, J. H. R.; Wunthrich, K. J. Mol. Biol. 1987, 196, 711 https://doi.org/10.1016/0022-2836(87)90042-8