DOI QR코드

DOI QR Code

Effect of Dexamethasone Preincubation on Polymer-Mediated Gene Delivery

  • Choi, Joon-Sig (Department of Biochemistry, Chungnam National University) ;
  • Lee, Min-Hyung (Department of Bioengineering, School of Chemical and Biomolecular Engineering, College of Engineering, Hanyang University)
  • Published : 2005.08.20

Abstract

Nuclear membrane is one of the main barriers in intracellular delivery of genetic materials. The previous report showed that glucocorticoid receptor dilated the nuclear pore to 60 nm in the presence of a ligand. It was also suggested that the transport of genetic material to nucleus might be facilitated by glucocorticoid. In this study, the effect of glucocorticoid preincubation in the polymeric gene delivery was investigated. The cells were preincubated with dexamethasone, a potent glucocorticoid, and transfection assays were performed with polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer. As a result, the transfection efficiency of PEI or PAMAM to the cells in the presence of dexamethasone was enhanced, compared to the cells without dexamethasone. This effect was not observed in the cells preincubated with cholesterol. The polymer/DNA complex was stable in the presence of dexamethasone. In addition, the cytotoxicities of the polymeric carriers to the cells were observed in the presence of dexamethasone. In conclusion, dexamethasone enhances the transfection efficiency of polymeric carriers and may be useful in the development of polymeric gene carriers.

Keywords

References

  1. Lee, M.; Kim, S. W. Pharm. News 2002, 9, 407
  2. Nishikawa, M.; Huang, L. Hum. Gene Ther. 2001, 12, 861 https://doi.org/10.1089/104303401750195836
  3. Plank, C.; Oberhauser, B.; Mechtler, K.; Koch, C.; Wagner, E. J. Biol. Chem. 1994, 269, 12918
  4. Wagner, E.; Ogris, M.; Zauner, W. Adv. Drug Deliv. Rev. 1998, 30, 97 https://doi.org/10.1016/S0169-409X(97)00110-5
  5. Wagner, E.; Plank, C.; Zatloukal, K.; Cotton, M.; Birnstiel, M. L. Proc. Natl. Acad. Sci. USA 1992, 89, 7934 https://doi.org/10.1073/pnas.89.17.7934
  6. Chan, C. K.; Jans, D. A. Hum. Gene Ther. 1999, 10, 1695 https://doi.org/10.1089/10430349950017699
  7. Jensen, K. D.; Nori, A.; Tijerina, M.; Kopeckova, P.; Kopecek, J. J. Control. Release 2003, 87, 89 https://doi.org/10.1016/S0168-3659(02)00352-8
  8. Keller, M.; Harbottle, R. P.; Perouzel, E.; Colin, M.; Shah, I.; Rahim, A.; Vaysse, L.; Bergau, A.; Moritz, S.; Brahimi-Horn, C.; Coutelle, C.; Miller, A. D. Chembiochem. 2003, 4, 286 https://doi.org/10.1002/cbic.200390049
  9. Munkonge, F. M.; Dean, D. A.; Hillery, E.; Griesenbach, U.; Alton, E. W. Adv. Drug Deliv. Rev. 2003, 55, 749 https://doi.org/10.1016/S0169-409X(03)00050-4
  10. Cartier, R.; Reszka, R. Gene Ther. 2002, 9, 157 https://doi.org/10.1038/sj.gt.3301635
  11. Chan, C. K.; Jans, D. A. Immunol. Cell. Biol. 2002, 80, 119 https://doi.org/10.1046/j.1440-1711.2002.01061.x
  12. Adcock, I. M.; Caramori, G. Immunol. Cell. Biol. 2001, 79, 376 https://doi.org/10.1046/j.1440-1711.2001.01025.x
  13. Shahin, V.; Albermann, L.; Schillers, H.; Kastrup, L.; Schafer, C.; Ludwig, Y.; Stock, C.; Oberleithner, H. J. Cell. Physiol. 2005, 202, 591 https://doi.org/10.1002/jcp.20152
  14. Han, S. O.; Mahato, R. I.; Kim, S. W. Bioconjug. Chem. 2001, 12, 337 https://doi.org/10.1021/bc000120w
  15. Lee, M.; Han, S. O.; Ko, K. S.; Koh, J. J.; Park, J. S.; Yoon, J. W.; Kim, S. W. Mol. Ther. 2001, 4, 339 https://doi.org/10.1006/mthe.2001.0458
  16. Rebuffat, A.; Bernasconi, A.; Ceppi, M.; Wehrli, H.; Verca, S. B.; Ibrahim, M.; Frey, B. M.; Frey, F. J.; Rusconi, S. Nat. Biotechnol. 2001, 19, 1155 https://doi.org/10.1038/nbt1201-1155
  17. Gruneich, J. A.; Price, A.; Zhu, J.; Diamond, S. L. Gene Ther. 2004, 11, 668 https://doi.org/10.1038/sj.gt.3302214

Cited by

  1. Ternary Complexes with Core-Shell Bilayer for Double Level Targeted Gene Delivery: In Vitro and In Vivo Evaluation vol.30, pp.5, 2013, https://doi.org/10.1007/s11095-012-0960-9
  2. -bPEI Micelles for Enhanced Nuclear Delivery of Gene Therapeutics vol.14, pp.6, 2014, https://doi.org/10.1002/mabi.201300432
  3. Low Molecular Weight Polyethylenimine-Mitochondrial Leader Peptide Conjugate for DNA Delivery to Mitochondria vol.27, pp.9, 2005, https://doi.org/10.5012/bkcs.2006.27.9.1335
  4. Synthesis of Novel Poly(amido ethylenimine) (PAMEIM) Dendrimer and Its Self-assembly with Plasmid DNA vol.27, pp.11, 2005, https://doi.org/10.5012/bkcs.2006.27.11.1894
  5. Dexamethasone-Conjugated Low Molecular Weight Polyethylenimine as a Nucleus-Targeting Lipopolymer Gene Carrier vol.18, pp.6, 2007, https://doi.org/10.1021/bc070012a
  6. Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies vol.37, pp.8, 2012, https://doi.org/10.1016/j.progpolymsci.2011.11.005
  7. Mechanisms of unprimed and dexamethasone‐primed nonviral gene delivery to human mesenchymal stem cells vol.116, pp.2, 2019, https://doi.org/10.1002/bit.26870
  8. Glucocorticoid Priming of Nonviral Gene Delivery to hMSCs Increases Transfection by Reducing Induced Stresses vol.18, pp.None, 2005, https://doi.org/10.1016/j.omtm.2020.07.014