DOI QR코드

DOI QR Code

Prediction of Solvent Effects on Rate Constant of [2+2] Cycloaddition Reaction of Diethyl Azodicarboxylate with Ethyl Vinyl Ether Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardebili) ;
  • Nooshyar, Mahdi (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardebili)
  • Published : 2005.01.20

Abstract

Artificial neural networks (ANNs), for a first time, were successfully developed for the modeling and prediction of solvent effects on rate constant of [2+2] cycloaddition reaction of diethyl azodicarboxylate with ethyl vinyl ether in various solvents with diverse chemical structures using quantitative structure-activity relationship. The most positive charge of hydrogen atom (q$^+$), dipole moment ($\mu$), the Hildebrand solubility parameter (${\delta}_H^2$) and total charges in molecule (q$_t$) are inputs and output of ANN is log k$_2$ . For evaluation of the predictive power of the generated ANN, the optimized network with 68 various solvents as training set was used to predict log k$_2$ of the reaction in 16 solvents in the prediction set. The results obtained using ANN was compared with the experimental values as well as with those obtained using multi-parameter linear regression (MLR) model and showed superiority of the ANN model over the regression model. Mean square error (MSE) of 0.0806 for the prediction set by MLR model should be compared with the value of 0.0275 for ANN model. These improvements are due to the fact that the reaction rate constant shows non-linear correlations with the descriptors.

Keywords

References

  1. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; VCH: 2003
  2. Cativiela, C.; Garcia, J. I.; Gil, J.; Martinez, R. M.; Mayoral, J. A.; Salvatella, L.; Urieta, J. S.; Mainer, A. M.; Abraham, M. H. J. Chem. Soc. Perkin Trans. 2 1997, 653
  3. Marcus, Y. J. Chem. Soc. Perkin Trans. 2 1994, 1015
  4. Gholami, M. R.; Habibi-Yangjeh, A. Int. J. Chem. Kinet. 2000, 32, 431 https://doi.org/10.1002/(SICI)1097-4601(2000)32:7<431::AID-KIN5>3.0.CO;2-J
  5. Gholami, M. R.; Habibi-Yangjeh, A. J. Phys. Org. Chem. 2000, 13, 468 https://doi.org/10.1002/1099-1395(200008)13:8<468::AID-POC258>3.0.CO;2-E
  6. Gholami, M. R.; Habibi-Yangjeh, A. Int. J. Chem. Kinet. 2001, 33, 118 https://doi.org/10.1002/1097-4601(200102)33:2<118::AID-KIN1003>3.0.CO;2-U
  7. Habibi-Yangjeh, A.; Gholami, M. R.; Mostaghim, R. J. Phys. Org. Chem. 2001, 14, 884 https://doi.org/10.1002/poc.438
  8. Marcus, Y. The Properties of Solvents; John Wiley and Sons: 1999
  9. Karelson, M.; Lobanov, V. S. Chem. Rev. 1996, 96, 1027 https://doi.org/10.1021/cr950202r
  10. Kamlet, M. J.; Abboud, J. L.; Taft, R. W. J. Am. Chem. Soc. 1977, 99, 6027 https://doi.org/10.1021/ja00460a031
  11. Kamlet, M. J.; Taft, R. W. Prog. Org. Chem. 1983, 48, 2877
  12. Taft, R. W.; Abraham, M. H.; Famini, G. R.; Doherty, R. M.; Abboud, J. L.; Kamlet, M. J. J. Pharm. Sci. 1985, 74, 807 https://doi.org/10.1002/jps.2600740802
  13. Kamlet, M. J.; Taft, R. W.; Famini, G. R.; Doherty, R. M. Acta Chem. Scand. 1987, 41, 589
  14. Lowrey, A. H.; Famini, G. R.; Wilson, L. Y. J. Chem. Soc. Perkin Trans. 2 1997, 1381
  15. Cronce, D. T.; Famini, G. R.; Soto, J. A. D.; Wilson, L. Y. J. Chem. Soc. Perkin Trans. 2 1998, 1293
  16. Engberts, J. B. F. N.; Famini, G. R.; Perjessy, A.; Wilson, L. Y. J. Phys. Org. Chem. 1998, 11, 261 https://doi.org/10.1002/(SICI)1099-1395(199804)11:4<261::AID-POC997>3.0.CO;2-0
  17. Famini, G. R.; Wilson, L. Y. J. Phys. Org. Chem. 1999, 12, 645 https://doi.org/10.1002/(SICI)1099-1395(199908)12:8<645::AID-POC165>3.0.CO;2-S
  18. Famini, G. R.; Benyamin, D.; Kim, C.; Veerawat, R.; Wilson, L. Y. Collect. Czech. Chem. Commun. 1999, 64, 1727 https://doi.org/10.1135/cccc19991727
  19. Habibi-Yangjeh, A. Indian J. Chem. 2004, 43B, 1504
  20. Turner, J. V.; Maddalena, D. J.; Cutler, D. J. Int. J. Pharm. 2004, 270, 209 https://doi.org/10.1016/j.ijpharm.2003.10.011
  21. Bose, N. K.; Liang, P. Neural Network Fundamentals; McGraw- Hill: 1996
  22. Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Weinhein, 1999
  23. Anker, S. L.; Jurs, P. C. Anal. Chem. 1992, 64, 1157 https://doi.org/10.1021/ac00034a015
  24. Xing, W. L.; He, X. W. Anal. Chim. Acta 1997, 349, 283 https://doi.org/10.1016/S0003-2670(97)00249-3
  25. Bunz, A. P.; Braun, B.; Janowsky, R. Fluid Phase Equilib. 1999, 158, 367 https://doi.org/10.1016/S0378-3812(99)00058-8
  26. Homer, J.; Generalis, S. C.; Robson, J. H. Phys. Chem. Chem. Phys. 1999, 1, 4075 https://doi.org/10.1039/a904096j
  27. Goll, E. S.; Jurs, P. C. J. Chem. Inf. Comp. Sci. 1999, 39, 974 https://doi.org/10.1021/ci990071l
  28. Vendrame, R.; Braga, R. S.; Takahata, Y.; Galvao, D. S. J. Chem. Inf. Comput. Sci. 1999, 39, 1094 https://doi.org/10.1021/ci990326v
  29. Gaspelin, M.; Tusar, L.; Smid-Korbar, J.; Zupan, J.; Kristl, J. Int. J. Pharm. 2000, 196, 37 https://doi.org/10.1016/S0378-5173(99)00443-3
  30. Wegner, J. K.; Zell, A. J. Chem. Inf. Comput. Sci. 2003, 43, 1077 https://doi.org/10.1021/ci034006u
  31. Kuzmanovski, I.; Aleksovska, S. Chemometr. Intell. Lab. Syst. 2003, 67, 167 https://doi.org/10.1016/S0169-7439(03)00092-3
  32. Sebastiao, R. C. O.; Braga, J. P.; Yoshida, M. I. Thermochimica Acta 2004, 412, 107 https://doi.org/10.1016/j.tca.2003.09.009
  33. Jalali-Heravi, M.; Masoum, S.; Shahbazikhah, P. J. Magn. Reson. 2004, 171, 176 https://doi.org/10.1016/j.jmr.2004.08.011
  34. Urata, S.; Takada, A.; Uchimaru, T.; Chandra, A. K.; Sekiya, A. J. Fluorine Chem. 2002, 116, 163 https://doi.org/10.1016/S0022-1139(02)00128-8
  35. Valkova, I.; Vracko, M.; Basak, S. C. Anal. Chim. Acta 2004, 509, 179 https://doi.org/10.1016/j.aca.2003.12.035
  36. Habibi-Yangjeh, A. Indian J. Chem. 2003, 42B, 1478
  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G. ; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98 (Revision A.1); Gaussian, Inc.: Pittsburgh, PA, 1998
  38. Hagan, M. T.; Menhaj, M. IEEE Trans. Neural Networks 1994, 5, 989 https://doi.org/10.1109/72.329697
  39. Matlab 6.5. Mathworks, 1984-2002
  40. Demuth, H.; Beale, M. Neural Network Toolbox; Mathworks: Natick, MA, 2000

Cited by

  1. A comprehensive study of the solvent effects on the cycloaddition reaction of diethyl azodicarboxylate and ethyl vinyl ether: Efficient implementation of QM and TD-DFT study vol.115, pp.6, 2014, https://doi.org/10.1002/qua.24853
  2. Prediction of dibenzothiophene conversion in the ultrasound assisted oxidative desulfurization process vol.34, pp.21, 2016, https://doi.org/10.1080/10916466.2016.1243126
  3. Prediction of basicity constants of various pyridines in aqueous solution using a principal component-genetic algorithm-artificial neural network vol.139, pp.12, 2008, https://doi.org/10.1007/s00706-008-0951-z
  4. Application of PC-ANN to Acidity Constant Prediction of Various Phenols and Benzoic Acids in Water vol.26, pp.5, 2008, https://doi.org/10.1002/cjoc.200890162
  5. Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water vol.140, pp.1, 2009, https://doi.org/10.1007/s00706-008-0049-7
  6. QSAR study of the 5-HT1A receptor affinities of arylpiperazines using a genetic algorithm–artificial neural network model vol.140, pp.5, 2009, https://doi.org/10.1007/s00706-008-0084-4
  7. Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to Tetrahymena pyriformis vol.140, pp.11, 2009, https://doi.org/10.1007/s00706-009-0185-8
  8. Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks vol.41, pp.3, 2009, https://doi.org/10.1002/kin.20386
  9. Prediction Acidity Constant of Various Benzoic Acids and Phenols in Water Using Linear and Nonlinear QSPR Models vol.26, pp.12, 2005, https://doi.org/10.5012/bkcs.2005.26.12.2007
  10. The Oxidation of Hydrazobenzene Catalyzed by Cobalt Complexes in Nonaqueous Solvents vol.27, pp.2, 2005, https://doi.org/10.5012/bkcs.2006.27.2.255
  11. Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR vol.12, pp.3, 2006, https://doi.org/10.1007/s00894-005-0050-6
  12. Prediction dielectric constant of different ternary liquid mixtures at various temperatures and compositions using artificial neural networks vol.45, pp.4, 2005, https://doi.org/10.1080/00319100601089679
  13. Prediction Partial Molar Heat Capacity at Infinite Dilution for Aqueous Solutions of Various Polar Aromatic Compounds over a Wide Range of Conditions Using Artificial Neural Networks vol.28, pp.9, 2005, https://doi.org/10.5012/bkcs.2007.28.9.1477
  14. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  15. Prediction of Melting Point for Drug-like Compounds Using Principal Component-Genetic Algorithm-Artificial Neural Network vol.29, pp.4, 2005, https://doi.org/10.5012/bkcs.2008.29.4.833