DOI QR코드

DOI QR Code

Gas Phase Proton Affinity, Basicity, and pKa Values for Nitrogen Containing Heterocyclic Aromatic Compounds

  • Hwang, Sun-Gu (School of Free Major, Miryang National University) ;
  • Jang, Yun-Hee (School of Chemistry, NS60, Seoul National University) ;
  • Chung, Doo-Soo (School of Chemistry, NS60, Seoul National University)
  • Published : 2005.04.20

Abstract

Bipyridine and its derivatives have been widely used as the ligands in transition metal complexes. The proton affinities of pyridine derivatives were calculated using an ab initio quantum mechanical method (B3LYP with various double zeta and triple zeta basis sets) in combination with the Poisson-Boltzmann continuum solvation model. Van der Waals radii of the atoms in the heterocyclic rings for the solvation energy calculation were set to values determined to reproduce the $pK_a$ values of guanine and oxoguanine derivatives and that of chlorine was optimized to reproduce the experimental values of relating compounds. The $pK_a$ values for the heterocyclic ring compounds were in agreement with the experimental values with a mean unsigned error of 0.45 $pK_a$ units.

Keywords

References

  1. Mondal, B.; Puranik, V. G.; Lahiri, G. K. Inorg. Chem. 2002, 41, 5831 https://doi.org/10.1021/ic020351+
  2. Chanda, N.; Mondal, B.; Puranik, V. G.; Lahiri, G. K. Polyhedron 2002, 21, 2033 https://doi.org/10.1016/S0277-5387(02)01131-2
  3. Barron, J. A.; Glazier, S.; Bernhard, S.; Takada, K.; Houston, P. L.; Abruna, H. D. Inorg. Chem. 2003, 42, 1448 https://doi.org/10.1021/ic020691v
  4. Lo, K. K. W.; Chung, C. K.; Zhu, N. Y. Chemistry-a European Journal 2003, 9, 475 https://doi.org/10.1002/chem.200390050
  5. McMillin, D. R.; Moore, J. J. Coord. Chem. Rev. 2002, 229, 113 https://doi.org/10.1016/S0010-8545(02)00041-3
  6. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Kaden, T. A.; Graetzel, M. Inorg. Chem. 2000, 39, 4542 https://doi.org/10.1021/ic000215+
  7. Roitzsch, M. R.; Lippert, B. J. Am. Chem. Soc. 2004, 126, 2421 https://doi.org/10.1021/ja038834f
  8. Rabbe, C.; Mikhalko, V.; Dognon, J. P. Theor. Chem. Acc. 2000, 104, 280 https://doi.org/10.1007/s002140000119
  9. Matyus, P.; Fuji, K.; Tanaka, K. Tetrahedron 1994, 50, 2405 https://doi.org/10.1016/S0040-4020(01)86958-1
  10. Jang, Y. H.; Goddard III, W. A.; Noyes, K. T.; Sowers, L. C.; Hwang, S.; Chung, D. S. Chem. Res. Toxicol. 2002, 15, 1023 https://doi.org/10.1021/tx010146r
  11. Topol, I. A.; Tawa, G. J.; Burt, S. K.; Rashin, A. A. J. Phys. Chem. A 1997, 101, 10075 https://doi.org/10.1021/jp9723168
  12. Lehtonen, O.; Ikkala, O.; Pietila, L.-O. J. Mol. Struct. (THEOCHEM) 2003, 663, 91 https://doi.org/10.1016/j.theochem.2003.08.065
  13. Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M. N.; Goddard III, W. A.; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875 https://doi.org/10.1021/ja00105a030
  14. Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775 https://doi.org/10.1021/jp953087x
  15. Honig, B.; Nicholls, A. Science 1995, 268, 1144 https://doi.org/10.1126/science.7761829
  16. Jang, Y. H.; Goddard III, W. A.; Noyes, K. T.; Sowers, L. C.; Hwang, S.; Chung, D. S. J. Phys. Chem. B 2003, 107, 344 https://doi.org/10.1021/jp020774x
  17. Kallies, B.; Mitzner, R. J. Phys. Chem. B 1997, 101, 2959 https://doi.org/10.1021/jp962708z
  18. Sinha, P.; Boesch, S. E.; Gu, C.; Wheeler, R. A.; Wilson, A. K. J. Phys. Chem. A 2004, 108, 9213 https://doi.org/10.1021/jp048233q
  19. Adam, K. R. J. Phys. Chem. A 2002, 106, 11963 https://doi.org/10.1021/jp026577f
  20. Perrin, D. D.; Dempsey, B.; Serjeant, E. P. $pK_{a}$ Prediction for Organic Acids and Bases; Chapman and Hall: London, 1981
  21. Almerindo, G. I.; Tondo, D. W.; Pietila, L.-O. J. Phys. Chem. A 2004, 108, 166 https://doi.org/10.1021/jp0361071
  22. Hwang, S.; Jang, Y. H.; Chung, D. S. Chem. Lett. 2001, 30, 1182
  23. Jang, Y. H.; Hwang, S.; Chung, D. S. Chem. Lett. 2001, 30, 1316
  24. Park, I.; Jang, Y. H.; Hwang, S.; Chung, D. S. Chem. Lett. 2003, 21, 376

Cited by

  1. Basicity, complexation ability and interfacial behavior of BTBPs: a simulation study vol.13, pp.7, 2011, https://doi.org/10.1039/C0CP01975E
  2. lanthanide ions vol.35, pp.1, 2011, https://doi.org/10.1039/C0NJ00527D
  3. -dodecaboranes vol.2013, pp.1, 2012, https://doi.org/10.1002/ejic.201200969
  4. H (M = Fe, Ru, and Os) in Acetonitrile vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1413
  5. Discovery of New Inhibitors of Cdc25B Dual Specificity Phosphatases by Structure-Based Virtual Screening vol.55, pp.9, 2012, https://doi.org/10.1021/jm201624h
  6. Theoretical and experimental study of the protonated 2,4,6-tri(2-pyridyl)-1,3,5-triazine [TPTZH2]2+ vol.145, pp.4, 2014, https://doi.org/10.1007/s00706-013-1113-5
  7. involving triazolylidene iridium complexes vol.38, pp.9, 2014, https://doi.org/10.1039/C4NJ00321G
  8. Molecular oxygen reduction catalyzed by a highly oxidative resistant complex of cobalt–hydrazone at the liquid/liquid interface vol.17, pp.48, 2015, https://doi.org/10.1039/C5CP04695E
  9. ) basicity of a series of 150 pyrazoles vol.39, pp.4, 2015, https://doi.org/10.1039/C4NJ02201G
  10. Polyfluorinated carba-closo-dodecaboranes with amino and ammonio substituents bonded to boron vol.44, pp.45, 2015, https://doi.org/10.1039/C5DT02055G
  11. ): insights from mixed N,O-donor ligands with variations of central heterocyclic moieties vol.19, pp.39, 2017, https://doi.org/10.1039/C7CP04625A
  12. Formation and decomposition of N-alkylnaphthalimides: experimental evidences and ab initio description of the reaction pathways vol.24, pp.5, 2011, https://doi.org/10.1002/poc.1768
  13. On the Effects of Changing Gaussian Program Version and SCRF Defining Parameters: Isopropylamine as a Case Study vol.85, pp.9, 2012, https://doi.org/10.1246/bcsj.20120016
  14. Designed model for the Morita–Baylis–Hillman reaction mechanism in the presence of CaO and CaO modified with ionic liquid as a solid base catalyst: a DFT and MP2 investigation vol.137, pp.9, 2018, https://doi.org/10.1007/s00214-018-2306-0
  15. Chiral superbases: the proton affinities of 1- and 2-aza[6]helicene in the gas phase vol.42, pp.9, 2007, https://doi.org/10.1002/jms.1256
  16. Tetraazaperopyrenes: A New Class of Multifunctional Chromophores vol.13, pp.26, 2007, https://doi.org/10.1002/chem.200700383
  17. Assessment of theoretical methods for the calculation of methyl cation affinities vol.29, pp.2, 2007, https://doi.org/10.1002/jcc.20790
  18. Basicity of Guanidines with Heteroalkyl Side Chains in Acetonitrile vol.2008, pp.30, 2008, https://doi.org/10.1002/ejoc.200800673
  19. Calculation of the Solvation Free Energy of the Proton in Methanol vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.589
  20. DFT Study of Water-Assisted Intramolecular Proton Transfer in the Tautomers of Thymine Radical Cation vol.27, pp.7, 2006, https://doi.org/10.5012/bkcs.2006.27.7.1009
  21. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  22. Density Functional Theoretical Study on the Proton Migration in Radical Cations of Substituted Cytosine:Guanine Pair vol.29, pp.3, 2005, https://doi.org/10.5012/bkcs.2008.29.3.539
  23. A DFT Study on Magnesium Ion Affinity of Glycine vol.52, pp.2, 2005, https://doi.org/10.5012/jkcs.2008.52.2.207
  24. Density Functional Theoretical Study on the pKa Values of Bipyridines vol.37, pp.12, 2005, https://doi.org/10.1246/cl.2008.1212
  25. Calculation of pKa Values of Nucleobases and the Guanine Oxidation Products Guanidinohydantoin and Spiroiminodihydantoin using Density Functional Theory and a Polarizable Continuum Model vol.112, pp.51, 2008, https://doi.org/10.1021/jp8068877
  26. Density Functional Theoretical Study on the Hydricities of Transition Metal Hydride Complexes in Water vol.30, pp.12, 2005, https://doi.org/10.5012/bkcs.2009.30.12.2927
  27. Study of 7-Methylguanine on pKa Values by Using Density Functional Theoretical Method vol.31, pp.1, 2010, https://doi.org/10.5012/bkcs.2010.31.01.168
  28. The role of conjugative interactions in acidic and basic character of five membered aromatic heterocyclics vol.949, pp.1, 2005, https://doi.org/10.1016/j.theochem.2010.02.029
  29. Tautomeric transformations and reactivity of alloxan vol.986, pp.None, 2005, https://doi.org/10.1016/j.comptc.2012.01.038
  30. Density Functional Theoretical Study on the Reduction Potentials of Catechols in Water vol.33, pp.11, 2005, https://doi.org/10.5012/bkcs.2012.33.11.3889
  31. An empirical model for gas phase acidity and basicity estimation vol.25, pp.2, 2014, https://doi.org/10.1080/1062936x.2013.864997
  32. Oxazolidine Transient Bases as Molecular Platforms for Testing Dynamic CO2 Capture in Biochemical Systems vol.3, pp.3, 2005, https://doi.org/10.1021/acsomega.7b02028
  33. Acidity of the chlorinated phenols: DFT study and experiential affirmation vol.25, pp.7, 2005, https://doi.org/10.1007/s00894-019-4096-2
  34. Calculations of pKa Values of Selected Pyridinium and Its N-Oxide Ions in Water and Acetonitrile vol.124, pp.3, 2005, https://doi.org/10.1021/acs.jpca.9b10319
  35. Benchmark calculations of proton affinity and gas‐phase basicity using multilevel (G4 and G3B3), B3LYP and MP2 computational methods of para‐substituted benzaldehyde compounds vol.42, pp.16, 2005, https://doi.org/10.1002/jcc.26538