DOI QR코드

DOI QR Code

Nucleophilic Substitution Reactions of α-Chloroacetanilides with Pyridines in Dimethyl Sulfoxide

  • Published : 2005.05.20

Abstract

The kinetic studies of the reactions of $\alpha$-chloroacetanilides $(YC_6H_4NRC(=O)CH_2Cl;\;R=H\;(4)\;and\;CH_3$ (5)) with pyridines have been carried out in dimethyl sulfoxide at 95 ${^{\circ}C}$. The pyridinolysis rates are faster with 4 than with 5 whereas the aminolysis rates with benzylamines are faster with 5 than with 4. The Brønsted ${\beta}_X$ values are in the range from 0.30 to 0.32 and the cross-interaction constants, $\rho_{XY}$, are small negative values; $\rho_{XY}$ = -0.06 and -0.10 for 4 and 5, respectively. Based on these and other results, the pyridinolyses of $\alpha$-chloroacetanilides are proposed to proceed via a stepwise mechanism with rate-limiting addition of the nucleophile to the carbonyl group to form zwitterionic tetrahedral intermediate ($T^{\pm}$) followed by a bridged type transition state to expel the leaving group.

Keywords

References

  1. Dewar, M. J. S. The Electronic Theory of Organic Chemistry; Oxford University Press: Oxford, 1949; p 73
  2. McLennan, D. J.; Pross, A. J. Chem. Soc. Perkin Trans. 2 1984, 981
  3. Pross, A.; Aviram, K.; Klix, R. C.; Kost, D.; Back, R. D. New J. Chem. 1984, 8, 711
  4. Shaik, S. S. J. Am. Chem. Soc. 1983, 105, 4359 https://doi.org/10.1021/ja00351a039
  5. Pross, A.; De Frees, D. J.; Levi, B. A.; Pollack, S. K.; Radom, L.; Hehre, W. J. J. Org. Chem. 1981, 46, 1693 https://doi.org/10.1021/jo00321a034
  6. Kost, D.; Aviram, K. Tetrahedron Lett. 1982, 23, 4157 https://doi.org/10.1016/S0040-4039(00)88374-4
  7. Wolfe, S.; Mitchell, D. J.; Schelegel, H. B. Can. J. Chem. 1982, 60, 1291 https://doi.org/10.1139/v82-190
  8. Conant, J. B.; Kirner, W. R. J. Am. Chem. Soc. 1924, 46, 232 https://doi.org/10.1021/ja01666a031
  9. Ross, S. D.; Finkelstein, M.; Petersen, R. C. J. Am. Chem. Soc. 1968, 90, 6411 https://doi.org/10.1021/ja01025a029
  10. Halvorsen, A.; Songstad, J. J. Chem. Soc., Chem. Commun. 1978, 327
  11. Bartlett, P. D.; Trachtenberg, E. N. J. Am. Chem. Soc. 1958, 80, 15808
  12. Thorpe, J. W.; Warkentin, J. Can. J. Chem. 1973, 51, 927 https://doi.org/10.1139/v73-137
  13. Bordwell, F. G.; Brannen, W. T. J. Am. Chem. Soc. 1964, 86, 4645 https://doi.org/10.1021/ja01075a025
  14. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557 https://doi.org/10.2174/1385272043370753
  15. Streitwieser, Jr., A. Solvolytic Displacement Reactions; McGraw- Hill: NewYork, 1962
  16. Baker, J. W. Trans Faraday Soc. 1951, 37, 643
  17. Bunton, C. A. Nucleophilic Substitution at a Saturated Carbon Atom; Elsevier: New York, 1963; p 5
  18. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700 https://doi.org/10.1021/ja01150a078
  19. Yousaf, T. I.; Lewis, E. S. J. Am. Chem. Soc. 1987, 109, 6137 https://doi.org/10.1021/ja00254a038
  20. Forster, W.; Laird, R. M. J. Chem. Soc., Perkin Trans. 2 1982, 135
  21. Lee, I.; Shim, C. S.; Chung, S. Y.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1988, 975
  22. Lee, I.; Shim, C. S.; Lee, H. W. J. Phys. Org. Chem. 1989, 2, 484 https://doi.org/10.1002/poc.610020607
  23. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 4706 https://doi.org/10.1021/jo000411y
  24. Lee, K. S.; Adhikary, K. K.; Lee, H. W.; Lee, B.-S.; Lee, I. Org. Biomol. Chem. 2003, 1, 1989 https://doi.org/10.1039/b300477e
  25. Lee, I.; Lee, H. W.; Yu, Y.-K. Bull. Korean Chem. Soc. 2003, 24, 993 https://doi.org/10.5012/bkcs.2003.24.7.993
  26. Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
  27. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
  28. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529 https://doi.org/10.1135/cccc19991529
  29. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
  30. Dean, J. A. Handbook of Organic Chemistry; MaGraw-Hill: New York, ch. 8, 1987
  31. Lee, I.; Hong, S. W.; Koh, H. J.; Lee, Y.; Lee, B.-S.; Lee, H. W. J. Org. Chem. 2001, 66, 8549 https://doi.org/10.1021/jo0108212
  32. Kim, T.-H.; Huh, C.; Lee, B.-S.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 2257
  33. Koh, H. J.; Kim, T. H.; Lee, B.-S.; Lee, I. J. Chem. Res. (S) 1996, 482
  34. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099
  35. Fukui, K. Theory of Orientation and Stereoselection; Springerverlag: Berlin, 1975
  36. Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976
  37. Li, H. G.; Kim, C. K.; Lee, B.-S.; Kim, C. K.; Rhee, S. K.; Lee, I. J. Am. Chem. Soc. 2002, 123, 2326 https://doi.org/10.1021/ja0033584
  38. Castro, E. A.; Sales, M. J.; Santos, J. G. J. Org. Chem. 1994, 59, 30 https://doi.org/10.1021/jo00080a008
  39. Castro, E. A.; Leandro, L.; Millan, P.; Santos, J. G. J. Org. Chem. 1999, 64, 1953 https://doi.org/10.1021/jo982063u
  40. Castro, E. A.; Munoz, P.; Santos, J. G. J. Org. Chem. 1999, 64, 8298 https://doi.org/10.1021/jo991036g
  41. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306
  42. Koh, H. J.; Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 839
  43. Lee, B. C.; Yoon, J. H.; Lee, C. G.; Lee, I. J. Phys. Org. Chem. 1994, 7, 273 https://doi.org/10.1002/poc.610070602
  44. Lee, I.; Shim, C. S.; Lee, H. W. J. Chem. Res. (S) 1992, 90
  45. Lee, I.; Koh, H. J. New J. Chem. 1996, 20, 131
  46. Oh, H. K.; Shin, C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 1169
  47. Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985
  48. Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 2263
  49. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970 https://doi.org/10.1021/ja00463a033
  50. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453
  51. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8479 https://doi.org/10.1021/ja00204a022
  52. Oh, H. K.; Shin, C. H.; Lee, I. Bull. Korean. Chem. Soc. 1995, 16, 657
  53. Oh, H. K.; Lee, J. M.; Lee, H. W.; Lee, I. Int. J. Chem. Kinet. 2004, 36, 434 https://doi.org/10.1002/kin.20000
  54. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874 https://doi.org/10.1021/jo025637a
  55. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995 https://doi.org/10.1021/jo0264269
  56. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018 https://doi.org/10.1021/ja00829a034
  57. Castro, E. A.; Aliaga, M.; Compodonico, P.; Santos, J. G. J. Org. Chem. 2002, 67, 8911 https://doi.org/10.1021/jo026390k
  58. Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69 https://doi.org/10.1016/S0065-3160(08)60108-2
  59. Buncel, E.; Wilson, H. J. Chem. Edu. 1987, 64, 475 https://doi.org/10.1021/ed064p475

Cited by

  1. Synthesis and in Vitro Antimicrobial Evaluation of New N-Heterocyclic Diquaternary Pyridinium Compounds vol.19, pp.8, 2014, https://doi.org/10.3390/molecules190811572
  2. Bromo–nitro substitution on a tertiary α carbon—a previously uncharacterized facet of the Kornblum substitution vol.5, pp.93, 2015, https://doi.org/10.1039/C5RA14798K
  3. Nucleophilic Substitution Reactions of α-Bromoacetanilides with Benzylamines vol.29, pp.1, 2005, https://doi.org/10.5012/bkcs.2008.29.1.191
  4. Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide vol.32, pp.3, 2005, https://doi.org/10.5012/bkcs.2011.32.3.857