DOI QR코드

DOI QR Code

Protection by Carnosine and Homocarnosine against L-DOPA-Fe(III)-Mediated DNA Cleavage

  • Published : 2005.08.20

Abstract

It has been proposed that oxidation of L-3,4-dihydroxyphenylalanine (DOPA) may contribute to the pathogenesis of neurodegenerative disease. In this study, L-DOPA-Fe(III)-mediated DNA cleavage and the protection by carnosine and homocarnosine against this reaction were investigated. When plasmid DNA was incubated with L-DOPA in the presence of Fe(III), DNA strand was cleaved. Radical scavengers and catalase significantly inhibited the DNA breakage. These results suggest that $H_2O_2$ may be generated from the oxidation of DOPA and then $Fe^{3+}$ likely participates in a Fenton’s type reaction to produce hydroxyl radicals, which may cause DNA cleavage. Carnosine and homocarnosine have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and homocarnosine against L-DOPA-Fe(III)-mediated DNA cleavage have been studied. Carnosine and homocarnosine significantly inhibited DNA cleavage. These compounds also inhibited the production of hydroxyl radicals in L-DOPA/$Fe^{3+}$ system. The results suggest that carnosine and homocarnosine act as hydroxyl radical scavenger to protect DNA cleavage. It is proposed that carnosine and homocarnosine might be explored as potential therapeutic agents for pathologies that involve damage of DNA by oxidation of DOPA.

Keywords

References

  1. Waite, J. H. Comp. Biochem. Physiol. B. 1990, 97, 19-29 https://doi.org/10.1016/0305-0491(90)90172-P
  2. Pileblad, E.; Slivka, A.; Bratvold, D.; Cohen, G. Arch. Biochem. Biophys. 1988, 263, 447-452 https://doi.org/10.1016/0003-9861(88)90657-1
  3. Halliwell, B.; Gutteridge, J. M. C. FEBS Lett. 1992, 307, 108-112 https://doi.org/10.1016/0014-5793(92)80911-Y
  4. Sutton, H. C.; Winterbourn, C. C. Free Radic. Biol. Med. 1989, 6, 53-60 https://doi.org/10.1016/0891-5849(89)90160-3
  5. Kang, J. H. Bull. Korean Chem. Soc. 2004, 25, 625-628 https://doi.org/10.5012/bkcs.2004.25.5.625
  6. Kohen, R.; Yamamoto, Y.; Cundy, K. C.; Ames, B. N. Proc. Natl. Acad. Sci. USA 1988, 85, 3175-3179 https://doi.org/10.1073/pnas.85.9.3175
  7. O'Dowd, J. J.; Robins, D. J.; Miller, D. J. Biochem. Biophys. Acta 1988, 967, 241-249 https://doi.org/10.1016/0304-4165(88)90015-3
  8. Brown, C. E. J. Theor. Biol. 1981, 88, 296-299
  9. Gercken, G.; Bischoff, H.; Trotz, M. Arzneimittel-Forschung 1980, 30, 2140-2143
  10. Aruoma, O. I.; Laughton, M. J.; Halliwell, B. Biochem. J. 1989, 264, 863-869
  11. Dahl, T. A.; Midden, W. R.; Hartman, P. E. Photochem. Photobiol. 1988, 47, 357-362 https://doi.org/10.1111/j.1751-1097.1988.tb02737.x
  12. Hartman, P. E.; Hartman, Z.; Ault, K. T. Photochem. Photobiol. 1990, 51, 59-66 https://doi.org/10.1111/j.1751-1097.1990.tb01684.x
  13. Kang, J. H. Bull. Korean Chem. Soc. 2005, 26, 178-180 https://doi.org/10.5012/bkcs.2005.26.1.178
  14. Halliwell, B.; Gutteridge, J. M. C. FEBS Lett. 1981, 128, 347- 352 https://doi.org/10.1016/0014-5793(81)80114-7
  15. Hipkiss, A. R.; Brownson, C. Cell Mol. Life Sci. 2000, 57, 747- 753 https://doi.org/10.1007/s000180050039
  16. Decker, E. A.; Crum, A. D.; Calvert, J. T. J. Agric. Food Chem. 1992, 40, 756-759 https://doi.org/10.1021/jf00017a009
  17. Ilic, T.; Jovanovic, M.; Jovicic A.; Tomovic, M. Vojnosanit. Pregl. 1998, 55, 463-468
  18. Ilic, T.; Jovanovic, M.; Jovicic, A.; Tomovic, M. Funct. Neurol. 1999, 14, 141-147
  19. Halliwell, B. Acta Neurol. Scand. Suppl. 1989, 126, 23-33
  20. Youdim, M. B.; Ben-Shachar, D.; Riederer, P. Acta Neurol. Scand. Suppl. 1989, 126, 47-54
  21. McFarland, G. A.; Holliday, R. Exp. Cell Res. 1994, 212, 167-175 https://doi.org/10.1006/excr.1994.1132
  22. Kantha, S. S.; Wada, S.; Tanaka, H.; Takeuchi, M.; Watabe, S.; Ochi, H. Biochem. Biophys. Res. Comm. 1996, 223, 278-282 https://doi.org/10.1006/bbrc.1996.0884
  23. Chan, W. K. M.; Decker, E. A.; Lee, J. B.; Butterfield, D. A. J. Agric. Food Chem. 1994, 42, 1407-1410 https://doi.org/10.1021/jf00043a003

Cited by

  1. Protective activity of carnosine and anserine against zinc-induced neurotoxicity: a possible treatment for vascular dementia vol.7, pp.8, 2015, https://doi.org/10.1039/C5MT00049A
  2. DNA Cleavage Induced by the Reaction of Salsolinol with Cu,Zn-Superoxide Dismutase vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2329
  3. Free radical scavenging and radioprotective effects of carnosine and anserine vol.78, pp.12, 2005, https://doi.org/10.1016/j.radphyschem.2009.07.023
  4. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/8218439