DOI QR코드

DOI QR Code

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy (Department of Chemistry, Universite Laval) ;
  • Kim, Tae-Wan (National Creative Research Initiative Center for Functional Nanomaterials, Department of Chemistry (School of Molecular Science-BK21), Korea Advanced Institute of Science and Technology) ;
  • Ryoo, Ryong (National Creative Research Initiative Center for Functional Nanomaterials, Department of Chemistry (School of Molecular Science-BK21), Korea Advanced Institute of Science and Technology)
  • Published : 2005.11.20

Abstract

Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

Keywords

References

  1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710 https://doi.org/10.1038/359710a0
  2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schenkler, J. L. J. Am. Chem. Soc. 1992, 114, 10834 https://doi.org/10.1021/ja00053a020
  3. Ciesla, U.; Schuth, F. Microporous Mesoporous Mater. 1999, 27, 131 https://doi.org/10.1016/S1387-1811(98)00249-2
  4. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem. Int. Ed. Engl. 1999, 38, 56 https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
  5. Schuth, F. Chem. Mater. 2001, 13, 3184 https://doi.org/10.1021/cm011030j
  6. Scott, B. J.; Wirnsberger, G.; Stucky, G. D. Chem. Mater. 2001, 13, 3140 https://doi.org/10.1021/cm0110730
  7. Schmidt, W.; Schuth, F. Adv. Mater. 2002, 14, 629 https://doi.org/10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B
  8. Stein, A. Adv. Mater. 2003, 15, 763 https://doi.org/10.1002/adma.200300007
  9. Soler-Illia, G. J. A. A.; Patarin, J.; Lebeau, B.; Sanchez, C. Chem. Rev. 2002, 102, 4093 https://doi.org/10.1021/cr0200062
  10. Sanchez, C.; Soler-Illia, G. J. A. A.; Ribot, F.; Grosso, D. S C. R. Chimie 2003, 6, 1131 https://doi.org/10.1016/j.crci.2003.06.001
  11. Taguchi, A.; Schuth, F. Microporous Mesoporous Mater. 2005, 77, 1 https://doi.org/10.1016/j.micromeso.2004.06.030
  12. Soler-Illia, G. J. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Colloid Interface Sci. 2003, 8, 109, and references therein https://doi.org/10.1016/S1359-0294(03)00002-5
  13. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. Science 1995, 269, 1242 https://doi.org/10.1126/science.269.5228.1242
  14. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N. ; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548 https://doi.org/10.1126/science.279.5350.548
  15. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024 https://doi.org/10.1021/ja974025i
  16. Cassiers, K.; Linssen, T.; Mathieu, M.; Benjelloun, M.; Schrijnemakers, K.; Van der Voort, P.; Cool, P.; Vansant, E. F. Chem. Mater. 2002, 14, 2317 https://doi.org/10.1021/cm0112892
  17. Kruk, M.; Celer, E. B.; Jaroniec, M. Chem. Mater. 2004, 16, 698 https://doi.org/10.1021/cm034911u
  18. Attard, G. S.; Glyde, J. C.; Goltner, C. G. Nature 1995, 378, 366 https://doi.org/10.1038/378366a0
  19. Ryoo, R.; Ko, C. H.; Kruk, M.; Antoschuk, V.; Jaroniec, M. J. Phys. Chem. B 2000, 104, 11465 https://doi.org/10.1021/jp002597a
  20. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712 https://doi.org/10.1021/ja002261e
  21. Shin, H. J.; Ko, C. H.; Ryoo, R. J. Mater. Chem. 2001, 11, 260 https://doi.org/10.1039/b009694f
  22. Imperor-Clerck, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 12, 898
  23. Miyazawa, K.; Inagaki, S. Chem. Commun. 2000, 2121
  24. Shin, H. J.; Ryoo, R.; Kruk, M.; Jaroniec, M. Chem. Commun. 2001, 349
  25. Ravikovitch, P. L.; Neimark, A. V. J. Phys. Chem. B 2001, 105, 6817 https://doi.org/10.1021/jp010621u
  26. Matos, J. R.; Mercuri, L. P.; Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 1726 https://doi.org/10.1021/cm000964p
  27. Goltner, C. G.; Smarsly, B.; Berton, B.; Antonietti, M. Chem. Mater. 2001, 13, 1617 https://doi.org/10.1021/cm0010755
  28. Galarneau, A.; Cambon, H.; DiRenzo, F.; Ryoo, R.; Choi, M.; Fajula, F. New J. Chem. 2003, 27, 73 https://doi.org/10.1039/b207378c
  29. Kim, S.-W.; Son, S. U.; Lee, S. I.; Hyeon, T.; Chung, Y. K. J. Am. Chem. Soc. 2000, 122, 1550 https://doi.org/10.1021/ja9939237
  30. Cho, Y. S.; Park, J. C.; Lee, B.; Kim, Y.; Yi, J. Catal. Lett. 2002, 81, 89 https://doi.org/10.1023/A:1016068324731
  31. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000, 287, 465 https://doi.org/10.1126/science.287.5452.465
  32. Wirnsberger, G.; Scott, B.; Chmelka, B. F.; Stucky, G. D. Adv. Mater. 2000, 12, 1450 https://doi.org/10.1002/1521-4095(200010)12:19<1450::AID-ADMA1450>3.0.CO;2-4
  33. Xu, W.; Akins, D. L. J. Phys. Chem. B 2002, 106, 1991 https://doi.org/10.1021/jp013042y
  34. Zhou, H.-S.; Yamada, T.; Asai, K.; Honma, I.; Uchida, H.; Katsube, T. Stud. Surf. Sci. Catal. 2002, 141, 623 https://doi.org/10.1016/S0167-2991(02)80598-5
  35. Washmon- Kriel, L.; Jimenez, V. L.; Balkus, K. J., Jr. J. Mol. Catal. B: Enzymatic 2000, 10, 453 https://doi.org/10.1016/S1381-1177(99)00123-X
  36. Yiu, H. H. P.; Wright, P. A.; Botting, N. P. Microporous Mesoporous Mater. 2001, 44-45, 763 https://doi.org/10.1016/S1387-1811(01)00258-X
  37. Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Microporous Mesoporous Mater. 2001, 44-45, 755 https://doi.org/10.1016/S1387-1811(01)00257-8
  38. Han, Y.-J.; Watson, J. T.; Stucky, G. D.; Butler, A. J. Mol. Catal. B: Enzymatic 2002, 17, 1 https://doi.org/10.1016/S1381-1177(01)00072-8
  39. Han, Y.-J.; Stucky, G. D.; Butler, A. J. Am. Chem. Soc. 1999, 121, 9897 https://doi.org/10.1021/ja992138r
  40. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D.; Kim, J. M.; Stucky, G. D.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449 https://doi.org/10.1038/35044040
  41. Newalkar, B. L.; Komarneni, S. Chem. Commun. 2002, 1774
  42. Yu, C.; Yu., Y.; Zhao, D. Chem. Commun. 2000, 575
  43. Van der Voort, P.; Benjelloun, M.; Vansant, E. F. J. Phys. Chem. B 2002, 106, 9027 https://doi.org/10.1021/jp0261152
  44. Schmidt-Winkel, P.; Lukens, W. W., Jr.; Zhao, D.; Yang, P.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1999, 121, 254 https://doi.org/10.1021/ja983218i
  45. Lettow, J. S.; Han, Y. J.; Schmidt-Winkel, P.; Yang, P.; Zhao, D.; Stucky, G. D.; Ying, J. Y. Langmuir 2002, 16, 8291 https://doi.org/10.1021/la000660h
  46. Kim, S. S.; Pauly, T. R.; Pinnavaia, T. J. Chem. Commun. 2000, 1661
  47. Kim, S. S.; Karkambar, A.; Pinnavaia, T. J.; Kruk, M.; Jaroniec, M. J. Phys. Chem. B 2001, 105, 7663 https://doi.org/10.1021/jp010773p
  48. Flodstrom, K.; Teixeira, C. V.; Amenitsch, H.; Alfredsson, V.; Linden, M. Langmuir 2004, 20, 4885 https://doi.org/10.1021/la049637c
  49. Flodstrom, K.; Wennerstrom, H.; Alfredsson, V. Langmuir 2004, 20, 680 https://doi.org/10.1021/la030173c
  50. Flodstrom, K.; Wennerstrom, H.; Teixeira, C. V.; Amenitsch, H.; Linden, M.; Alfredsson, V. Langmuir 2004, 20, 10311 https://doi.org/10.1021/la0482958
  51. Ruthstein, S.; Frydman, V.; Kababya, S.; Goldfarb, D. J. Phys. Chem. B 2003, 107, 1739 https://doi.org/10.1021/jp021964a
  52. Ruthstein, S.; Frydman, V.; Goldfarb, D. J. Phys. Chem. B 2004, 108, 9016 https://doi.org/10.1021/jp049133n
  53. Kleitz, F.; Schmidt, W.; Schuth, F. Microporous Mesoporous Mater. 2003, 65, 1 https://doi.org/10.1016/S1387-1811(03)00506-7
  54. Tian, B.; Liu, X.; Yu, C.; Gao, F.; Luo, Q.; Xie, S.; Tu, B.; Zhao, D. Chem. Commun. 2002, 1186
  55. Yang, C. M.; Zibrowius, B.; Schmidt, W.; Schuth, F. Chem. Mater. 2004, 16, 2918 https://doi.org/10.1021/cm049526z
  56. Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Adv. Mater. 1998, 10, 1380 https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1380::AID-ADMA1380>3.0.CO;2-8
  57. Yang, P.; Zhao, D.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 1998, 10, 2033 https://doi.org/10.1021/cm980201q
  58. Zhao, D.; Sun, J. Y.; Li, Q. Z.; Stucky, G. D. Chem. Mater. 2000, 12, 275 https://doi.org/10.1021/cm9911363
  59. Feng, P. Y.; Bu, X. H.; Stucky, G. D.; Pine, D. J. J. Am. Chem. Soc. 2000, 122, 994 https://doi.org/10.1021/ja992921j
  60. Zhu, H.; Jones, D. J.; Zajac, J.; Roziere, J.; Dutartre, R. Chem. Commun. 2001, 2568
  61. Muth, O.; Schellbach, C.; Froba, M. Chem. Commun. 2001, 2032
  62. Goto, Y.; Inagaki, S. Chem. Commun. 2002, 2410
  63. Guo, W.; Kim, I.; Ha, C. S. Chem. Commun. 2003, 2692
  64. Kim, J. M.; Stucky, G. D. Chem. Commun. 2000, 1159
  65. Matos, J. R.; Mercuri, L. P.; Kruk, M.; Jaroniec, M. Langmuir 2002, 18, 884 https://doi.org/10.1021/la0155294
  66. Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M. J. Phys. Chem. B 2002, 106, 4640 https://doi.org/10.1021/jp013583n
  67. Matos, J. R.; Kruk, M.; Mercuri, L. P.; Jaroniec, M.; Zhao, L.; Kamiyama, T.; Terasaki, O.; Pinnavaia, T. J.; Liu, Y. J. Am. Chem. Soc. 2003, 125, 821 https://doi.org/10.1021/ja0283347
  68. Matos, J. R.; Kruk, M.; Mercuri, L. P.; Jaroniec, M.; Zhao, L.; Kamiyama, T.; Terasaki, O.; Pinnavaia, T. J.; Liu, Y. J. Am. Chem. Soc. 2003, 125, 821 https://doi.org/10.1021/ja0283347
  69. Liu, X.; Tian, B.; Yu, C.; Gao, F.; Xie, S.; Tu, B.; Che, R.; Peng, L.-M.; Zhao, D. Angew. Chem. Int. Ed. 2002, 41, 3876
  70. Shin, H. J.; Ko, C. H.; Ryoo, R. J. Mater. Chem. 2001, 11, 260 https://doi.org/10.1039/b009694f
  71. Han, Y.-J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068
  72. Huang, M. H.; Choudrey, A.; Yang, P. Chem. Commun. 2000, 1063
  73. Yang, H.; Shi, Q.; Tian, B.; Lu, Q.; Gao, F.; Xie, S.; Fan, J.; Yu, C.; Tu, B.; Zhao, D. J. Am. Chem. Soc. 2003, 125, 4724 https://doi.org/10.1021/ja034005i
  74. Tian, B. Z.; Liu, X. Y.; Yang, H. F.; Xie, S. H.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Adv. Mater. 2003, 15, 1370 https://doi.org/10.1002/adma.200305211
  75. Laha, S.; Ryoo, R. Chem. Commun. 2003, 2138
  76. Schuth, F. Angew. Chem. Int. Ed. 2003, 42, 3604 https://doi.org/10.1002/anie.200300593
  77. Feng, H. F.; Zhao, D. Y. J. Mater. Chem. 2005, 15, 1217
  78. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712 https://doi.org/10.1021/ja9933846
  79. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169 https://doi.org/10.1038/35084046
  80. Zhang, W.-H.; Liang, C.; Sun, H.; Shen, Z.; Guan, Y.; Ying, P.; Li, C. Adv. Mater. 2002, 14, 1776
  81. Vix-Guterl, C.; Boulard, S.; Parmentier, J.; Patarin, J.; Werckmann, J. Chem. Lett. 2002, 10, 1062
  82. Kim, T.-W.; Park, I.-S.; Ryoo, R. Angew. Chem. Int. Ed. 2003, 42, 4375
  83. Solovyov, L.; Kim, T.-W.; Kleitz, F.; Terasaki, O.; Ryoo, R. Chem. Mater. 2004, 16, 2274
  84. Alexandridis, P.; Hatton, T. A. Colloids Surfaces A: Physicochem. Eng. Aspects 1995, 96, 1
  85. Kipkemboi, P.; Fogden, A.; Alfredsson, V.; Flodstrom, K. Langmuir 2001, 17, 5398 https://doi.org/10.1021/la001715i
  86. Flodstrom, K.; Alfredsson, V. Microporous Mesoporous Mater. 2003, 59, 167 https://doi.org/10.1016/S1387-1811(03)00308-1
  87. Chan, Y. T.; Lin, H.-P.; Mou, C. Y.; Liu, S. T. Chem. Commun. 2002, 2878
  88. Kim, T.-W.; Ryoo, R.; Kruk, M.; Gierszal, K. P.; Jaroniec, M.; Kamiya, S.; Terasaki, O. J. Phys. Chem. B 2004, 108, 11480
  89. Kabalnov, A.; Olsson, U.; Wennerstrom, H. J. Phys. Chem. 1995, 98, 6220
  90. Wang, Y. Q.; Yang, C. M.; Zibrowius, B.; Spliethoff, B.; Linden, M.; Schuth, F. Chem. Mater. 2003, 15, 5029 https://doi.org/10.1021/cm034769x
  91. Yu, C.; Tian, B.; Fan, J.; Stucky, G. D.; Zhao, D. Chem. Commun. 2001, 2726
  92. Yu, C.; Tian, B.; Fan, J.; Stucky, G. D.; Zhao, D. J. Am. Chem. Soc. 2002, 124, 4556 https://doi.org/10.1021/ja025548f
  93. Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D. Angew. Chem. Int. Ed. 2003, 42, 3146 https://doi.org/10.1002/anie.200351027
  94. Flodstrom, K.; Alfredsson, V.; Kallrot, N. J. Am. Chem. Soc. 2003, 125, 4402
  95. Tian, B. Z.; Liu, X.; Solovyov, L.; Liu, Z.; Yang, H.; Zhang, Z.; Xie, S.; Zhang, F.; Tu, B.; Yu, C.; Terasaki, O.; Zhao, D. J. Am. Chem. Soc. 2003, 126, 865 https://doi.org/10.1021/ja037877t
  96. Hodgins, R.; Garcia-Bennet, A.; Wright, P. A. Microporous Mesoporous Mater. 2005, 79, 241
  97. Choi, M.; Heo, W.; Kleitz, F.; Ryoo, R. Chem. Commun. 2003, 1340
  98. Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M. J. Phys. Chem. B 2002, 106, 4640 https://doi.org/10.1021/jp013583n
  99. Galarneau, A.; Cambon, H.; DiRenzo, F.; Ryoo, R.; Choi, M.; Fajula, F. New J. Chem. 2003, 27, 73 https://doi.org/10.1039/b207378c
  100. Sauer, J.; Marlow, F.; Schuth, F. Phys. Chem. Chem. Phys. 2002, 3, 5579
  101. Kleitz, F.; Choi, S. H.; Ryoo, R. Chem. Commun. 2003, 2136
  102. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R. J. Am. Chem. Soc. 2005, 127, 7601
  103. Agren, P.; Linden, M.; Rosenholm, J. B.; Schwarzenbacher, R.; Kriechbaum, M.; Amenitsch, H.; Laggner, P.; Blanchard, J.; Schuth, F. J. Phys. Chem. B 1999, 103, 5943 https://doi.org/10.1021/jp984684x
  104. Feng, P.; Bu, X.; Pine, D. J. Langmuir 2000, 16, 5304 https://doi.org/10.1021/la991444f
  105. Kleitz, F.; Blanchard, J.; Zibrowius, B.; Schuth, F.; Agren, P.; Linden, M. Langmuir 2002, 18, 4963 https://doi.org/10.1021/la020013l
  106. Sakamoto, Y.; Kim, T.-W.; Ryoo, R.; Terasaki, O. Angew. Chem. Int. Ed. 2004, 43, 5231
  107. Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743 https://doi.org/10.1021/jp991673a
  108. Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R. J. Phys. Chem. B 2002, 106, 1256 https://doi.org/10.1021/jp0257653
  109. Solovyov, L. A.; Zaikovskii, V. I.; Shmakov, A. N.; Belousov, O. V.; Ryoo, R. J. Phys. Chem. B 2002, 106, 12198
  110. Armstrong, J.; Chowdhry, B.; Mitchell, J.; Beezer, A.; Leharne, S. J. Phys. Chem. 1996, 100, 1738 https://doi.org/10.1021/jp951390s
  111. Kwon, K.-W.; Park, M. J.; Hwang, J.; Char, K. Polym. J. 2001, 33, 404
  112. Holmqvist, P.; Alexandridis, P.; Lindman, B. Macromolecules 1997, 30, 6788 https://doi.org/10.1021/ma970625q
  113. Holmqvist, P.; Alexandridis, P.; Lindman, B. J. Phys. Chem. B 1998, 102, 1149 https://doi.org/10.1021/jp9730297
  114. Kleitz, F.; Liu, D.; Anilkumar, G. M.; Park, I.-S.; Solovyov, L. A.; Shmakov, A. N.; Ryoo, R. J. Phys. Chem. B 2003, 107, 14296
  115. Ravikovitch, P. I.; Neimark, A. V. Langmuir 2002, 18, 1550 https://doi.org/10.1021/la026140z
  116. Ravikovitch, P. I.; Neimark, A. V. Langmuir 2002, 18, 9830 https://doi.org/10.1021/la026140z
  117. Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373 https://doi.org/10.1021/ja01145a126
  118. Zhou, W.; Hunter, H. M. A.; Wright, P. A.; Ge, Q.; Thomas, J. M. J. Phys. Chem. B 1998, 102, 6934
  119. Grudzien, R. M.; Jaroniec, M. Chem. Commun. 2005, 1076
  120. Sakamoto, Y.; Diaz, I.; Terasaki, O.; Zhao, D.; Perez-Pariente, J.; Kim, J. M.; Stucky, G. D. J. Phys. Chem. B 2002, 106, 3118
  121. Liang, Y.; Hanzlik, M.; Anwander, R. Chem. Commun. 2005, 525
  122. Kleitz, F.; Solovyov, L. A.; Anilkumar, G. M.; Choi, S. H.; Ryoo, R. Chem. Commun. 2004, 1536
  123. Sakya, P.; Seddon, J. M.; Templer, R. H.; Mirkin, R. J.; Tiddy, G. J. T. Langmuir 1997, 13, 3706 https://doi.org/10.1021/la9701844
  124. Kleitz, F.; Kim, T.-W.; Ryoo, R. Langumir, in press
  125. Ryoo, R.; Joo, S. H. Stud. Surf. Sci. Catal. 2004, 148, 241 https://doi.org/10.1016/S0167-2991(04)80200-3
  126. Shen, W.; Shi, J.; Chen, H.; Gu, J.; Zhu, Y.; Dong, X. Chem. Letters 2005, 34, 390 https://doi.org/10.1246/cl.2005.390
  127. Rossinyol, E.; Arbiol, J.; Peiro, F.; Cornet, A.; Morante, J. R.; Tian, B.; Bo, T.; Zhao, D. Sensors and Actuors B 2005, 109, 57 https://doi.org/10.1016/j.snb.2005.03.016
  128. Choi, M.; Kleitz, F.; Liu, D.; Lee, H. Y.; Ahn, W.-S.; Ryoo, R. J. Am. Chem. Soc. 2005, 127, 1924

Cited by

  1. First-principles study on adsorption of Au atom on hydroxylated SiO2 surface vol.26, pp.6, 2011, https://doi.org/10.1007/s11595-011-0387-x
  2. Synthesis of Thermally Stable Mesoporous Alumina by using Bayberry Tannin as Template in Aqueous System vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2650
  3. β-diketone functionalized SBA-15 and SBA-16 for rapid liquid–solid extraction of copper vol.22, pp.2, 2015, https://doi.org/10.1007/s10934-015-9921-0
  4. Protected activity of a phytase immobilized in mesoporous silica with benefits to plant phosphorus nutrition vol.74, pp.1, 2015, https://doi.org/10.1007/s10971-014-3577-0
  5. SBA-type mesoporous materials with cylindrical and spherical structures for the controlled loading and release of ibuprofen vol.85, pp.2, 2018, https://doi.org/10.1007/s10971-017-4560-3
  6. Liquid-phase adsorption experiments on ordered mesoporous silicas vol.13, pp.5-6, 2007, https://doi.org/10.1007/s10450-007-9063-z
  7. Mesoporous Silica: A Suitable Adsorbent for Amines vol.4, pp.11, 2009, https://doi.org/10.1007/s11671-009-9396-5
  8. Porous Organic-inorganic Hybrids for Removal of Amines vol.27, pp.3, 2006, https://doi.org/10.5012/bkcs.2006.27.3.399
  9. Mesoporous Thin Films with Accessible Pores from Surfaces vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.808
  10. Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates vol.28, pp.6, 2005, https://doi.org/10.5012/bkcs.2007.28.6.1015
  11. Characterization and adsorptive application of ordered mesoporous silicas vol.253, pp.13, 2007, https://doi.org/10.1016/j.apsusc.2006.12.105
  12. Liquid adsorption of n-octane/octanol/ethanol on SBA-16 silica vol.315, pp.1, 2005, https://doi.org/10.1016/j.jcis.2007.06.029
  13. 자기조립 이중블록공중합체와 졸-겔 공정을 이용한 이산화티타늄과 이산화규소 2차원 나노점 및 나노선 배열의 모폴로지 제어 vol.52, pp.4, 2005, https://doi.org/10.5012/jkcs.2008.52.4.387
  14. Templating behavior of a triblock copolymer surfactant with very long hydrophilic PEO chains (PEO140PPO39PEO140) for the synthesis of cubic mesoporous silica with larg vol.113, pp.1, 2005, https://doi.org/10.1016/j.micromeso.2007.11.033
  15. Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure vol.20, pp.38, 2010, https://doi.org/10.1039/c0jm01274b
  16. Synthesis and characterization of Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 nanocomposite for Heck reaction vol.47, pp.1, 2005, https://doi.org/10.1016/j.materresbull.2011.09.018
  17. Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst vol.37, pp.3, 2005, https://doi.org/10.1016/j.ijhydene.2011.10.107
  18. Post synthesis alumination of KIT-6 materials with Ia3d symmetry and their catalytic efficiency towards multicomponent synthesis of 1H-pyrazolo[1,2-]phthalazine-5,10-dione carbonitriles and carboxylat vol.361, pp.None, 2012, https://doi.org/10.1016/j.molcata.2012.05.003
  19. Selective acid-functionalized mesoporous silica catalyst for conversion of glycerol to monoglycerides: state of the art and future prospects vol.34, pp.2, 2005, https://doi.org/10.1515/revce-2016-0039
  20. Efficient, selective and mild oxidation of sulfides and oxidative coupling of thiols catalyzed by Pd(II)-isatin Schiff base complex immobilized into three-dimensional mesoporous silica KIT-6 vol.41, pp.5, 2005, https://doi.org/10.1080/17415993.2020.1769095
  21. Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction vol.12, pp.1, 2021, https://doi.org/10.33961/jecst.2020.00892
  22. Solvent-free selective oxidation of alcohols with tert-butyl hydroperoxide catalyzed by palladium(II) isatin Schiff base complex supported into three-dimensional mesoporous silica KIT-6 vol.47, pp.3, 2005, https://doi.org/10.1007/s11164-020-04319-0