DOI QR코드

DOI QR Code

Novel Fabrication of Nanoporous Alumina Membrane Microtubes: 2-Dimensional Nanoporous Arrays on Every Facets of Microtubes

  • Chae, Weon-Sik (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University) ;
  • Im, Sung-Jae (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University) ;
  • Lee, Jin-Kyu (School of Chemistry, Seoul National University) ;
  • Kim, Yong-Rok (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University)
  • Published : 2005.03.20

Abstract

Free-standing nanoporous alumina membrane microtubes with different shapes (rectangular and cylindrical tubes) and variable dimensions were easily fabricated by direct anodization of the aluminum templates of the specified shapes (strip and wire) and dimensions during the electrochemical reaction.

Keywords

References

  1. Diggle, J. W.; Downie, T. C.; Goulding, C. W. Chem. Rev. 1969, 69, 365 https://doi.org/10.1021/cr60259a005
  2. Li, F.; Zhang, L.; Metzger, R. M. Chem. Mater. 1998, 10, 2470 https://doi.org/10.1021/cm980163a
  3. Martin, C. R. Science 1994, 266, 1961 https://doi.org/10.1126/science.266.5193.1961
  4. Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. J. Appl. Phys. 1998, 84, 6023 https://doi.org/10.1063/1.368911
  5. Lee, W.; Lee, J.-K. Adv. Mater. 2002, 14, 1187 https://doi.org/10.1002/1521-4095(20020903)14:17<1187::AID-ADMA1187>3.0.CO;2-X
  6. Ohij, N.; Enomoto, N.; Mizushima, T.; Kakuta, N.; Morioka, Y.; Ueno, A. J. Chem. Soc., Faraday Trans. 1994, 90, 1279 https://doi.org/10.1039/ft9949001279
  7. Asoh, H.; Nishio, K.; Nakao, M.; Tamamura, T.; Masuda, H. J. Electrochem. Soc. 2001, 148, B152 https://doi.org/10.1149/1.1355686
  8. Gasparac, R.; Kohli, P.; Mota, M. O.; Trofin, L.; Martin, C. R. Nano Lett. 2004, 4, 513 https://doi.org/10.1021/nl0352494
  9. Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M.; Lyon, L. A.; Natan, M. J.; Mallouk, T. E. Adv. Mater. 1999, 11, 1021 https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1021::AID-ADMA1021>3.0.CO;2-S
  10. Routkevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M. J. Phys. Chem. 1996, 100, 14037 https://doi.org/10.1021/jp952910m
  11. Lahav, M.; Sehayek, T.; Vaskevich, A.; Rubinstein, I. Angew. Chem., Int. Ed. 2003, 42, 5576 https://doi.org/10.1002/anie.200352216
  12. Suh, J. S.; Lee, J. S. Appl. Phys. Lett. 1999, 75, 2047 https://doi.org/10.1063/1.124911
  13. Lee, W.; Yoo, H.-I.; Lee, J.-K. Chem. Commun. 2001, 2530
  14. Lee, J.-K.; Koh, W.-K.; Chae, W.-S.; Kim, Y.-R. Chem. Commun. 2002, 138
  15. Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Science 2002, 296, 1997 https://doi.org/10.1126/science.1071210
  16. Lee, J. S.; Suh, J. S. Bull. Korean Chem. Soc. 2003, 24, 1827 https://doi.org/10.5012/bkcs.2003.24.12.1827
  17. Lee, S. B.; Mitchell, D. T.; Trofin, L.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. Science 2002, 296, 2198 https://doi.org/10.1126/science.1071396
  18. Yamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; Teramae, N. Nature Mater. 2004, 3, 337 https://doi.org/10.1038/nmat1107
  19. Mikulskas, I.; Juodkazis, S.; Tomasiunas, R.; Dumas, J. G. Adv. Mater. 2001, 13, 1574 https://doi.org/10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9
  20. Govyadinov, A.; Emeliantchik, I.; Kurilin, A. Nucl. Inst. Met. Phys. Res. A 1998, 419, 667 https://doi.org/10.1016/S0168-9002(98)00861-4
  21. Delendik, K.; Emeliantchik, I.; Litomin, A.; Rumyantsev, V.; Voitik, O. Nucl. Phys. B 2003, 125, 394 https://doi.org/10.1016/S0920-5632(03)91023-1
  22. Kukhta, A. V.; Gorokh, G. G.; Kolesnik, E. E.; Mitkovets, A. I.; Taoubi, M. I.; Koshin, Y. A.; Mozalev, A. M. Surf. Sci. 2002, 507-510, 593 https://doi.org/10.1016/S0039-6028(02)01294-3
  23. Patermarakis, G.; Pavlidou, C. J. Catal. 1994, 147, 140 https://doi.org/10.1006/jcat.1994.1124
  24. Patermarakis, G.; Nicolopoulos, N. J. Catal. 1999, 187, 311 https://doi.org/10.1006/jcat.1999.2627
  25. Li, A.-P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Adv. Mater. 1999, 11, 483 https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<483::AID-ADMA483>3.0.CO;2-I
  26. Yan, J.; Rama Rao, G. V.; Barela, M.; Brevnov, D. A.; Jiang, Y.; Xu, H.; López, G. P.; Atanassov, P. B. Adv. Mater. 2003, 15, 2015 https://doi.org/10.1002/adma.200305360
  27. Gong, D.; Yadavalli, V.; Paulose, M.; Pishko, M.; Grimes, C. A. Biomed. Microdev. 2003, 5, 75 https://doi.org/10.1023/A:1024471618380
  28. Mizushima, T.; Matsumoto, K.; Sugoh, J.; Ohkita, H.; Kakuta, N. Appl. Catal., A: Gen. 2004, 265, 53 https://doi.org/10.1016/j.apcata.2004.01.002
  29. Niwa, S.; Eswaramoorthy, M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. Science 2002, 295, 105 https://doi.org/10.1126/science.1066527
  30. Masuda, H.; Satoh, M. Jpn. J. Appl. Phys. 1996, 35, L126 https://doi.org/10.1143/JJAP.35.L126
  31. Coronas, J.; Santamaría, J. Catal. Today 1999, 51, 377 https://doi.org/10.1016/S0920-5861(99)00090-5

Cited by

  1. Effect of voltammetric parameters on fabrication of highly ordered nanoporous alumina structures vol.87, pp.5, 2009, https://doi.org/10.1179/002029609X12513625869257
  2. Flow through polydisperse pores in an anodic alumina membrane: A new method to measure the mean pore diameter vol.124, pp.20, 2018, https://doi.org/10.1063/1.5050341
  3. Side wall anodization of aluminum thin film on silicon substrate vol.22, pp.5, 2005, https://doi.org/10.1007/BF02705800
  4. Fabrication and Characterization of Porous Anodic Alumina Films from Impure Aluminum Foils vol.154, pp.1, 2007, https://doi.org/10.1149/1.2387104