DOI QR코드

DOI QR Code

Synthesis and Structural Characterization of Main Group 15 Organometallics R3M and R(Ph)2P(=N-Ar)(M = P, Sb, Bi; R = phenanthrenyl; Ar = 2,6-iPr2-C6H3)

  • Lee, Eun-Ji (Department of Applied Chemistry, Kyungpook National University) ;
  • Hong, Jin-Seok (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Tae-Jeong (Department of Applied Chemistry, Kyungpook National University) ;
  • Kang, Young-Jin (Division of Science Education, Kangwon National University) ;
  • Han, Eun-Me (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Jae-Jung (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Song, Ki-Hyung (Department of Chemistry, Korea National University of Education) ;
  • Kim, Dong-Uk (Department of Science Education, Daegu National University of Education)
  • Published : 2005.12.20

Abstract

New group 15 organometallic compounds, M$(phenanthrenyl)_3$ (M = P (1), Sb (2), Bi (3)) have been prepared from the reactions of 9-phenanthrenyllithium with $MCl_3$. A reaction of 9-(diphenylphosphino)phenanthrene with 2,6-diisopropylphenyl azide led to the formation of (phenanthrenyl)${(Ph)}_2P$=N-(2,6-$^iPr_2C_6H_3$) (4). The crystal structures of 2 and 4 have been determined by single-crystal X-ray diffractions, both of which crystallize with two independent molecules in the asymmetric unit. Compound 2 shows a trigonal pyramidal geometry around the Sb atom with three phenanthrenyl groups being located in a screw-like fashion with an approximately $C_3$ symmetry. A significant amount of CH- -$\pi$ interaction exists between two independent molecules of 4. The phosphorus center possesses a distorted tetrahedral environment with P-N bond lengths of 1.557(3)$\AA$ (P(1) N) and 1.532(3)$\AA$ (P(2)-N), respectively, which are short enough to support a double bond character. One of the most intriguing structural features of 4 is an unusually diminished bond angle of C-N-P, attributable to the hydrogen bonding of N(1)-H(5A) [ca. 2.49$\AA$ between two adjacent molecules in crystal packing. The compounds 1-3 show purple emission both in solution and as films at room temperature with emission maxima ($\lambda_{max}$) at 349, 366, and 386 nm, respectively, attributable to the ligand centered $\pi$ $\rightarrow$ $\pi^\ast$ transition in phenanthrene contributed by the lone pair electrons of the Gp 15 elements. Yet the nature of luminescence observed with 4 differs in that it originates from $\pi$ (diisopropylbenzene)-$\pi^\ast$ (phenanthrene) transitions with the $\rho\pi$contribution from the nitrogen atom. The emission maximum of 4 is red-shifted ranging 350-450 nm due to the internal charge transfer from the phenanthrenyl ring to the N-arylamine group as deduced from the ab initio calculations.

Keywords

References

  1. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913 https://doi.org/10.1063/1.98799
  2. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610 https://doi.org/10.1063/1.343409
  3. Hu, N.-X.; Esteghamatian, M.; Xie, S.; Popovic, Z.; Ong, B.; Hor, A. M.; Wang, S. Adv. Mater. 1999, 11, 1460 https://doi.org/10.1002/(SICI)1521-4095(199912)11:17<1460::AID-ADMA1460>3.0.CO;2-0
  4. Bulovic, V.; Gu, G.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Nature 1996, 380, 29 https://doi.org/10.1038/380029a0
  5. Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 759 https://doi.org/10.1021/cr941154y
  6. Shen, Z.; Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Thompson, M. E. Science 1997, 276, 2009 https://doi.org/10.1126/science.276.5321.2009
  7. Papkovski, D. B. Sens. Actuators, B 1995, 29, 213 https://doi.org/10.1016/0925-4005(95)01685-6
  8. Ma, Y.; Che, C.-M.; Chao, H.-Y.; Zhou, X.; Chan, W.-H.; Shen, J. Adv. Mater. 1999, 11, 852
  9. Mills, A.; Lepre, A. Anal. Chem. 1997, 69, 4653 https://doi.org/10.1021/ac970430g
  10. Poterini, G.; Serpone, N.; Bergkamp, M. A.; Netzel, T. L. J. Am. Chem. Soc. 1983, 105, 4639 https://doi.org/10.1021/ja00352a020
  11. Ma, Y.; Zhang, H.; Shen, J.; Che, C.-M. Synth. Met. 1998, 94, 245 https://doi.org/10.1016/S0379-6779(97)04166-0
  12. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403, 750 https://doi.org/10.1038/35001541
  13. Papkovski, D. B.; Ponomarev, G. V.; Kurochkin, I, N.; Korpela, T. Anal. Lett. 1995, 28, 2027 https://doi.org/10.1080/00032719508000022
  14. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151 https://doi.org/10.1038/25954
  15. Adachi, A.; Baldo, M. A.; Forrest, S. R.; Lamansky, S. M.; Thompson, E. R.; Kwong, C. Appl. Phys. Lett. 2001, 78, 1622 https://doi.org/10.1063/1.1355007
  16. Adachi, A.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 2082 https://doi.org/10.1063/1.1400076
  17. O'Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 74, 442 https://doi.org/10.1063/1.123055
  18. Baldo, M. A.; Lamansky, S.; Burraw, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4 https://doi.org/10.1063/1.124258
  19. Kwong, R. C.; Sibley, S.; Dubovoy, T.; Baldo, M.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 1999, 11, 3709 https://doi.org/10.1021/cm9906248
  20. Thompson, M. E.; Burrow, P. E.; Forrest, S. R. Curr. Opin. Solid State Mater. Sci. 1999, 4, 369 https://doi.org/10.1016/S1359-0286(99)00037-6
  21. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzag, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304 https://doi.org/10.1021/ja003693s
  22. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzag, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem. 2001, 40, 1704 https://doi.org/10.1021/ic0008969
  23. Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1984, 106, 6647 https://doi.org/10.1021/ja00334a031
  24. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Pure Appl. Chem. 1999, 71, 2095 https://doi.org/10.1351/pac199971112095
  25. Wu, Q.; Esteghamatian, M.; Hu, N.-X.; Popovic, Z.; Enright, G.; Tao, Y.; D'Iorio, M.; Wang, S. Chem. Mater. 2000, 12, 79 https://doi.org/10.1021/cm990372a
  26. Wu, Q.; Esteghamatian, M.; Hu, N.-X.; Popovic, Z.; Enright, G.; Breeze, S. R.; Wang, S. Angew. Chem., Int. Ed. 1999, 38, 985 https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<985::AID-ANIE985>3.0.CO;2-C
  27. Pang, J.; Tao, Y.; Freiberg, S.; Yang, X. P.; D'Iorio, M.; Wang, S. J. Mater. Chem. 2002, 12, 206 https://doi.org/10.1039/b105422h
  28. Pang, J.; Marotte, E. J. P.; Seward, C.; Brown, R. S.; Wang, S. Angew. Chem., Int. Ed. 2001, 40, 4042 https://doi.org/10.1002/1521-3773(20011105)40:21<4042::AID-ANIE4042>3.0.CO;2-0
  29. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403, 750 https://doi.org/10.1038/35001541
  30. Kwong, R. C.; Sibley, S.; Dubovoy, T.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 1999, 11, 3709 https://doi.org/10.1021/cm9906248
  31. Kwong, R. C.; Lamansky, S.; Thompson, M. E. Adv. Mater. 2000, 12, 1134 https://doi.org/10.1002/1521-4095(200008)12:15<1134::AID-ADMA1134>3.0.CO;2-1
  32. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzag, F.; Lee, H.-E.; Aadachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304 https://doi.org/10.1021/ja003693s
  33. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel- Razzag, F.; Kwong, R. C.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem. 2001, 40, 1704 https://doi.org/10.1021/ic0008969
  34. Pomestchenko, I. E.; Luman, C. R.; Hissler, M.; Ziessel, R.; Castellano, F. N. Inorg. Chem. 2003, 42, 1394 https://doi.org/10.1021/ic0261631
  35. Brooks, J.; Babayan, Y.; Lamansky, S.; Djurovich, P.; Tsyba, I.; Bau, R.; Thompson, M. E. Inorg. Chem. 2002, 41, 3055 https://doi.org/10.1021/ic0255508
  36. Duan, J. P.; Sun, P. P.; Chen, C. H. Adv. Mater. 2003, 15, 224 https://doi.org/10.1002/adma.200390051
  37. Chen, F. C.; He, C. F.; Yang, Y. Appl. Phys. Lett. 2003, 82, 1006 https://doi.org/10.1063/1.1544658
  38. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90, 5048 https://doi.org/10.1063/1.1409582
  39. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic: New York, 1999
  40. Ingle, J. D.; Crouch, S. R. Jr. Spectrochemical Analysis; Prentice Hall: Englewood Cliffs, NJ, 1988; Chapter 12
  41. Hassan, A.; Breeze, S. R.; Courtenay, S.; Deslippe, C.; Wang, S. Organometallics 1996, 15, 5613 https://doi.org/10.1021/om960641w
  42. Wu, S. Q.; Lavigne, J. A.; Tao, Y.; D'Iorio, M.; Wang, S. Chem. Mater. 2001, 13, 71 https://doi.org/10.1021/cm0007149
  43. Kang, Y.; Song, D.; Schmider, H.; Wang, S. Organometallics 2002, 21, 2413 https://doi.org/10.1021/om020220g
  44. Jia, W.-L.; Liu, Q.-D. R.; Wang, S. Organometallics 2003, 22, 4070 https://doi.org/10.1021/om030404a
  45. Lee, J.; Liu, Q.-D.; Motala, M.; Dane, J.; Gao, J.; Kang, Y.; Wang, S. Chem. Mater. 2004, 16, 1869 https://doi.org/10.1021/cm035379d
  46. Jia, W.-L.; Bai, D.-R.; McCormick, T. M.; Liu, Q.-D.; Motala, M.; Wang, R.-Y.; Seward, C.; Tao, Y.; Wang, S. Chem. Eur. J. 2004, 10, 994 https://doi.org/10.1002/chem.200305579
  47. Kim, T.-J.; Kim, D.-U.; Paik, S.-H.; Kim, S.-H.; Tak, S.-H.; Han, Y.-S.; Kim, K.-B.; Ju, H.-J. Materials Science and Engineering: C 2004, 24, 147 https://doi.org/10.1016/j.msec.2003.09.058
  48. Kim, K.-D.; Han, Y.-S.; Tak, Y.-H.; Kim, D.-U.; Kim, T.-J.; Yoon, U.-C.; Kim, S.-H.; Moon, H.-W. European Patent No. 03027185.2 (EU), 2004, 01. 20
  49. Phosphorus: The Carbon Copy; Dillon, K. B.; Mathey, F.; Nixon, J. F., Eds; John Wiley and Sons: New York, 1998
  50. Nyulaszi, L.; Veszpremi, T.; Reffy, J. J. Phys. Chem. 1993, 97, 4011 https://doi.org/10.1021/j100118a015
  51. Wright, V. A.; Gates, D. P. Angew. Chem. Int. Ed. 2002, 41, 2389 https://doi.org/10.1002/1521-3773(20020703)41:13<2389::AID-ANIE2389>3.0.CO;2-6
  52. For a recent example employing a ligand similar to our system, see: Cadierno, V.; Diez, J.; Garcia-Alvarez, J.; Gimono, J. Organometallics 2004, 23, 2421 https://doi.org/10.1021/om030658w
  53. Chandross, E. A.; Thomas, H. T. J. Am. Chem. Soc. 1972, 94, 2421 https://doi.org/10.1021/ja00762a037
  54. Vogler, A.; Paukner, A.; Kunkely, H. Coord. Chem. Rev. 1990, 97, 285 https://doi.org/10.1016/0010-8545(90)80096-C
  55. Razuvaev, G. A.; Egorochkin, A. N.; Kuznetsov, V. A.; Glushakova, V. N.; Shabanov, A. V. J. Organomet. Chem. 1978, 148, 147 https://doi.org/10.1016/S0022-328X(00)84058-9
  56. Fluorescence and Phosphorescence: Rendell, D., Ed.; John Wiley & Sons: New York, 1987
  57. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Morokuma, Q. K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K. J.; Cioslowski, B. J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head- Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998
  58. Spencer, L. P.; Altwer, R.; Wei, P.; Gelmini, L.; Gauld, J.; Stephan, D. W. Organometallics 2003, 22, 3841 https://doi.org/10.1021/om030311t
  59. SHELXTL NT Crystal Structure Analysis Package, Version 5.10; Bruker AXS, Analytical X-ray System, Madison, WI, 1999

Cited by

  1. (N-7-Azaindolyl)oligothiophenes: synthesis, characterization, and photophysical properties vol.63, pp.36, 2005, https://doi.org/10.1016/j.tet.2007.06.037
  2. Open for Bismuth: Main Group Metal-to-Ligand Charge Transfer vol.60, pp.14, 2005, https://doi.org/10.1021/acs.inorgchem.0c03818