DOI QR코드

DOI QR Code

Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Gemini Surfactant and Sodium Lauryl Ether Sulfate

  • Cheon, Ho-Young (Department of Industrial and Engineering Chemistry, Chungbuk National University) ;
  • Jeong, Noh-Hee (Department of Industrial and Engineering Chemistry, Chungbuk National University) ;
  • Kim, Hong-Un (Department of Applied Chemistry, Dongyang Technical College)
  • Published : 2005.01.20

Abstract

Molecular aggregates of surfactant molecules consisting of one or more bilayers arranged in a hollow, closed, usually spherical geometry are termed “esicles”or “iposomes” In recent years it has been found that in certain systems the vesicular structure forms spontaneously and is long lived, and it has been suggested that these structures may in fact constitute the equilibrium state in these cases (as is true of micelles) This paper deals with the mixed CMC, vesicles, phase behavior, phase transition, geometrical structure, their formation and characterization in the aqueous solutions of mixed cationic/anionic surfactants systems. TEM micrographs revealed that the vesicles were of spherical shape and that their size was of around 180 nm. The zeta potentials are positive at CGS1-rich regions and negative at SLES-rich regions. In the region where SLES/CGS1 (6/4), the zeta potentials are very small, implying that the vesicles at this surfactant ratio may be less stable. At other surfactant ratios, the vesicles are thought to be stable, supported by large absolute values of zeta potentials and little change in UV absorbance for several months.

Keywords

References

  1. Gregoriadis, G.; Leathwood, P. D.; Ryman, B. E. FEBS Lett. 1971, 14, 95-99 https://doi.org/10.1016/0014-5793(71)80109-6
  2. Knight, C. G. Liposomes in Physical Structure to Therapeutic Applications; Elsevier: Amsterdam, 1981
  3. Ostro, M. J. Liposomes; Marcel Dekker: New York, 1983
  4. Puisieux, F.; Delattre, J. Les Liposomes: Applications Therapeutiques; Lavoisier Tec et Doc: Paris, 1985
  5. Kiwada, H.; Niimura, H.; Fujisaki, Y.; Yamada, S.; Kato, Y. Chem. Pharm. Bull. 1985, 33, 753 https://doi.org/10.1248/cpb.33.753
  6. Arunothayanym, P.; Turton, J. A.; Uchegbu, I. F.; Florence, A. T. J. Pharm. Sci. 1999, 88, 34 https://doi.org/10.1021/js980286u
  7. Papahadjopoulos, D.; Gabizon, A. In Targetting of Drugs 2. Optimizing Strategies; Gregoriadis, G.; Allison, A. C.; Poste, G. Eds.; NATO ASI Ser. 199, Plenum Publishing Corporation: New York, 1991; p. 95
  8. Uchegbu, I. F.; Double, J. A.; Turton, J. A.; Florence, A. T. Pharm. Res. 1995, 12, 1019 https://doi.org/10.1023/A:1016210515134
  9. Gopi, N.; Devaraj, M. Pharmacy thesis, Poona College of Pharmacy, University of Pune: 1997
  10. Youn, H. C.; Subhash, B.; Fendler, J. H. J. Phys. Chem. 1988, 92, 6320 https://doi.org/10.1021/j100333a029
  11. Hoffmann, H.; Ulbricht, W. Tenside Surf Det. 1998, 35, 421
  12. Meagher, R. J.; Hatton, T. A.; Bose, A. Langmuir 1998, 14, 4081 https://doi.org/10.1021/la970941y
  13. Marques, E. F.; Regev, O.; Khan, A.; da Graca Miguel, M.; Lindman, B. J. Phys. Chem. B 1998, 102, 6746 https://doi.org/10.1021/jp980355t
  14. Salkar, R. A.; Mukesh, D.; Samant, S. D.; Manohar, C. Langmuir 1998, 14, 3778 https://doi.org/10.1021/la971024v
  15. Marques, E. F.; Regev, O.; Khan, A.; da Graca Miguel, M.; Lindman, B. J. Phys. Chem. B 1999, 103, 8353 https://doi.org/10.1021/jp990852p
  16. Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadrinski, T. A. N. Sci. 1989, 245, 1371 https://doi.org/10.1126/science.2781283
  17. Chiruvolu, S.; Istraelachvili, J. N.; Naranjo, E.; Xu, Z.; Zasadzinski, J. A. Langmuir 1995, 11, 4256 https://doi.org/10.1021/la00011a016
  18. Bergstrom, M.; Pedersen, J. S. Langmuir 1999, 15, 2250 https://doi.org/10.1021/la981495x
  19. Bergstrom, M.; Pedersen, J. S. J. Phys. Chem. B 1999, 103, 8502 https://doi.org/10.1021/jp990535i
  20. Sakai, H.; Matsumura, A.; Yokoyama, S.; Saji, T.; Abe, M. J. Phys. Chem. B 1990, 103, 10737 https://doi.org/10.1021/jp9927505
  21. Samiey, B.; Alizadeh, K.; Moghaddasi, M.; Mousavi, M.; Alizadeh, N. Bull. Korean Chem. Soc. 2004, 25, 726 https://doi.org/10.5012/bkcs.2004.25.5.726
  22. Bergstrom, M.; Pedersen, J. S. Langmuir 1998, 14, 3754 https://doi.org/10.1021/la980107o
  23. Marques, E.; Khan, A.; da Gracia Miguel, M.; Lindmann, B. J. Phys. Chem. 1993, 97, 4729 https://doi.org/10.1021/j100120a028
  24. Kimizuka, N.; Wakiyama, T.; Kunitake, T. J. Am. Chem. Soc. 1996, 118, 5808 https://doi.org/10.1021/ja960707e
  25. Brady, J. E.; Evabs, D. F.; Kacharr, R.; Ninham, B. W. J. Am. Chem. Soc. 1984, 106, 4279 https://doi.org/10.1021/ja00327a044
  26. Chung, Y.-C.; Lee, H.-J.; Park, J.-Y. Bull. Korean Chem. Soc. 1998, 19, 1249
  27. Chung, Y.-C.; Lee, H.-J.; Park, J.-Y. Bull. Korean Chem. Soc. 1999, 20, 16
  28. Coi, T.-S.; Shimizu, G.; Shirai, M.; Hamada, K. Dyes Pigments 2000, 45, 145 https://doi.org/10.1016/S0143-7208(00)00015-2
  29. Benjelloum, M.; Van der Voort, M.; Cool, P.; Collart, O.; Vansant, E. F. Phys. Chem. 2001, 3, 127 https://doi.org/10.1039/b007022j
  30. Camilleri, P. Chem. Commun. 2000, 1253
  31. Menger, F. M.; Binder, W. H.; Keiper, J. S. Langmuir 1997, 13, 3247 https://doi.org/10.1021/la970111k
  32. Bhattacharya, S.; De, S. Langmuir 1990, 15, 3400 https://doi.org/10.1021/la9808770
  33. Bhattacharya, S.; De, S.; Subramanian, M. J. Org. Chem. 1998, 63, 7640 https://doi.org/10.1021/jo980315l
  34. Blanzat, M.; Perez, E.; Rico-Lattes, I.; Prome, D.; Prome, J. C.; Lattes, A. Langmuir 1999, 15, 6163 https://doi.org/10.1021/la990300y
  35. Blanzat, M.; Perez, E.; Rico-Lattes, I. New J. Chem. 1999, 23, 1063 https://doi.org/10.1039/a905417k
  36. Zemb, T.; Dubois, M.; Deme, B.; Gulik-Krzywicki, T. Sci. 1999, 283, 816 https://doi.org/10.1126/science.283.5403.816
  37. Caillet, C.; Hebrant, M.; Tondre, C. Langmuir 2000, 16, 9099 https://doi.org/10.1021/la000810o
  38. Caillet, C. Thesis, Universite Henri: Poincare-Nancy, 2000; p 1
  39. Hoffmann, H.; Ulbricht, W. Recent Res. Dev. Phys. Chem. 1998, 2, 113
  40. Bergstrom, M.; Pedersen, J. S.; Schurtenberger, P.; Egelhaaf, S. U. J. Phys. Chem. B 1999, 103, 9888 https://doi.org/10.1021/jp991846w
  41. Marques, E. F. Langmuir 2000, 16, 4798 https://doi.org/10.1021/la9908135
  42. Safran, S. A. Adv. Phys. 1999, 48, 395 https://doi.org/10.1080/000187399243428
  43. Villeneuve, M.; Kaneshina, S.; Imae, T.; Aratono, M. Langmuir 1999, 15, 2029 https://doi.org/10.1021/la980925g
  44. Kim, H.; Lim, K. Bull. Korean Chem. Soc. 2003, 24, 1449 https://doi.org/10.5012/bkcs.2003.24.10.1449
  45. Tabata, Y.; Ueno, M.; Meguro, K. J. Am. Oil Chem. Soc. 1984, 61, 1123 https://doi.org/10.1007/BF02636237
  46. Von Smoluchowski, M. Z. Phys. Chem. 1918, 44, 1
  47. Van Gils, G. E.; Kruyt, H. R. Kolloid Chem. Beih. 1936, 46, 60
  48. Henry, D. C. Proc. R. Soc. London A 1931, 133, 106
  49. Ohshima, H. J. Coll. Interf. Sci. 1994, 168, 269 https://doi.org/10.1006/jcis.1994.1419
  50. Oh, S.; Moon, S.; Lee, D.; Lee, D.; Kang, Y. Bull. Korean Chem. Soc. 2004, 25, 280 https://doi.org/10.5012/bkcs.2004.25.2.280
  51. Rosen, M. J.; Cohen, A. W.; Dahanayake, M.; Hua, X. Y. J. Phys. Chem. 1982, 86, 54
  52. Israelachvili, J. N. In Intermolecular and Surface Forces; Academic Press: New York, 1991
  53. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc. Faraday Trans. 1976, 272, 1525
  54. Yukishige, K.; Hirotaka, U.; Norio, Y.; Katsuhiro, N.; Masahiko, A. Langmuir 1995, 11, 2380 https://doi.org/10.1021/la00007a011
  55. Kim, H.; Lim, K. Bull. Korean Chem. Soc. 2004, 25, 382 https://doi.org/10.5012/bkcs.2004.25.3.382

Cited by

  1. Aqueous Phase Surfactant Selective Shape Controlled Synthesis of Lead Sulfide Nanocrystals vol.111, pp.49, 2007, https://doi.org/10.1021/jp075477c
  2. Supramolecular vesicles of cationic gemini surfactants modulated by p-sulfonatocalix[4]arene vol.55, pp.10, 2012, https://doi.org/10.1007/s11426-012-4709-4
  3. Modifying Effect of Imidazolium-Based Ionic Liquids on Surface Activity and Self-Assembled Nanostructures of Sodium Dodecyl Sulfate vol.118, pp.15, 2014, https://doi.org/10.1021/jp5010049
  4. The Formation and Properties of Multilamellar Vesicles in Gemini/SDS/H 2 O System vol.27, pp.1, 2005, https://doi.org/10.1081/dis-200066819
  5. Measurement of Critical Micelle Concentration (CMC) by Cyclic Voltammetry: CMCs for Sodium Dodecyl Sulfate Solution with Compounds Having Pyridine vol.28, pp.10, 2005, https://doi.org/10.5012/bkcs.2007.28.10.1857
  6. Role of the alkyl chain number and head groups location on surfactants self-assembly in aqueous solutions vol.368, pp.1, 2005, https://doi.org/10.1016/j.colsurfa.2010.07.025
  7. Formation of Monodisperse Charged Vesicles in Mixtures of Cationic Gemini Surfactants and Anionic SDS vol.27, pp.2, 2005, https://doi.org/10.1021/la103976p
  8. Properties of binary surfactant systems of nonionic surfactants C12E10, C12E23, and C12E42 with a cationic gemini surfactant in vol.356, pp.2, 2005, https://doi.org/10.1016/j.jcis.2011.01.062
  9. Self-Assembly Properties of Cationic Gemini Surfactants with Biodegradable Groups in the Spacer vol.24, pp.8, 2005, https://doi.org/10.3390/molecules24081481
  10. Molecular simulation of the morphology and viscosity of aqueous micellar solutions of sodium lauryl ether sulfate (SLEnS) vol.4, pp.4, 2005, https://doi.org/10.1088/2515-7639/ac0093