DOI QR코드

DOI QR Code

Influence of Alkyl Chain Length on Fragmentations and Ion-Molecule Reactions of Ionized c-C6H11-(CH2)nCO2H

  • Published : 2005.11.20

Abstract

Fragmentations and ion-molecule reactions of ionized cyclohexane propionic acid and cyclohexane butyric acid were studied using FTMS and theoretical calculations. The difference in bond dissociation depending on the aliphatic chain length was investigated and mechanisms for the possible rearrangements depending on the aliphatic carbon length were suggested. The most abundant fragment ion of the ionized cyclohexane propionic acid was c-$C_6H_{11}CH_2\;^+$ formed from the molecular ion by the direct C-C bond cleavage, while that of the ionized cyclohexane butyric acid was c-$C_6H_9C(OH)=OH^+$ formed by rearrangement of the molecular ion from the acid to diol form and loss of propyl radical. Stabilities of the radical and distonic ions of $C_nH_{2n}O^{+\bullet}$ formed from the molecular ion were compared. Protonated molecules were dissociated into smaller ions by losing one or two water molecules. The $[nM + H]^+$, $[nM + H - H_2O]^+$, and $[nM + H - 2H_2O]^+$ with n = 2 and 3 were generated by solvation with the neutral molecules in the ICR cell at long ion trapping time.

Keywords

References

  1. Lossing, F. P. J. Am. Chem. Soc. 1977, 99, 7526 https://doi.org/10.1021/ja00465a022
  2. Harrison, A. G.; Keyes, B. G. J. Am. Chem. Soc. 1968, 90, 5046 https://doi.org/10.1021/ja01020a062
  3. Liou, C.-C.; Eichmann, E. S.; Brodbelt, J. S. Org. Mass Spectrom. 1992, 27, 1098 https://doi.org/10.1002/oms.1210271020
  4. Ahmed, M. S.; Hudson, C. E.; Giam, C. S.; McAdoo, D. J. Org. Mass Spectrom. 1991, 26, 1089 https://doi.org/10.1002/oms.1210261211
  5. Blanc, P. A.; Gulacar, F. O.; Buch, A. Org. Mass Spectrom. 1978, 13, 135 https://doi.org/10.1002/oms.1210130305
  6. Yoo, Z.-W.; Kim, N.-S.; Lee, D.-S. Bull. Korean Chem. Soc. 2004, 25, 271 https://doi.org/10.5012/bkcs.2004.25.2.271
  7. Choi, S.-S.; So, H.-Y.; Kim, B.-T. Bull. Korean Chem. Soc. 2005, 26, 609 https://doi.org/10.5012/bkcs.2005.26.4.609
  8. Srinivas, R.; Vairamani, M.; Rao, G. K. V.; Mirza, U. A. Org. Mass Spectrom. 1989, 24, 435 https://doi.org/10.1002/oms.1210240616
  9. McLafferty, F. W. Interpretation of Mass Spectra, 3rd ed.; University Science Books: California, 1980
  10. Dearden, D. A.; Liang, Y.; Nicoll, J. B.; Kellersberger, K. A. J. Mass Spectrom. 2001, 36, 989 https://doi.org/10.1002/jms.215
  11. Nibbering, N. M. M. Acc. Chem. Res. 1990, 23, 279 https://doi.org/10.1021/ar00177a003
  12. Buchanan, M. V.; Hettich, R. L. Anal. Chem. 1993, 65, 245A https://doi.org/10.1021/ac00053a001
  13. Marshall, A. G. Acc. Chem. Res. 1985, 18, 316 https://doi.org/10.1021/ar00118a006
  14. Gross, M. L.; Rempel, D. L. Science 1984, 226, 261 https://doi.org/10.1126/science.6385250
  15. Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695 https://doi.org/10.1063/1.555719

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  2. Low-temperature Formation of Carbonaceous Dust Grains from PAHs vol.889, pp.2, 2020, https://doi.org/10.3847/1538-4357/ab62b7