DOI QR코드

DOI QR Code

Synthesis of a New α-Dioxime Derivative and Its Application for Selective Homogeneous Liquid-Liquid Extraction of Cu(II) into a Microdroplet Followed by Direct GFAAS Determination

  • Ghiasvand, A. R. (Department of Chemistry, Lorestan University) ;
  • Shadabi, S. (Department of Chemistry, Lorestan University) ;
  • Kakanejadifard, A. (Department of Chemistry, Lorestan University) ;
  • Khajehkoolaki, A. (Department of Chemistry, Lorestan University)
  • Published : 2005.05.20

Abstract

A fast and reliable method for the selective separation and preconcentration of $Cu^{2+}$ ions using homogeneous liquid-liquid extraction was developed. A new $\alpha$-dioxime derivative (2H-1,4-benzothioazine-2,3(4H)dionedioxime, Dioxime I) was synthesized and investigated as a suitable selective complexing ligand for $Cu^{2+}$ ions. Zonyl FSA (FSA) was applied as a phase-separator agent under the slightly acidic pH conditions. Under the optimal experimental conditions ([FSA] = 3.2% w/v, [THF] = 19.5% v/v, [Dioxime I] = 1.9 ${\times}\;10^{-3}$ M, and pH = 4.7), 10 ${\mu}g\;of\;Cu^{2+}$ in 5.2 mL aqueous phase could be extracted quantitatively into 80 $\mu$L of the sedimented phase. The maximum concentration factor was 65-fold. The limit of detection of the proposed method was 0.005 ng $mL^{-1}$. The reproducibility of the proposed method, on the 10 replicate measurements, was 1.3%. The influence of the pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the complexing ligand and the effect of different diverse ions on the extraction and determination of $Cu^{2+}$ ions were investigated. The proposed method was applied to the extraction and determination of $Cu^{2+}$ ion in different synthetic and natural water samples.

Keywords

References

  1. Fritz, J. S. Analytical Solid-Phase Extraction; Wiley-VCH: New York, 1999
  2. Shamsipur, M.; Ghiasvand, A. R.; Yamini, Y. Anal. Chem. 1999, 71, 4892 https://doi.org/10.1021/ac981229o
  3. Shamsipur, M.; Ghiasvand, A. R.; Yamini, Y. J. Supercrit. Fluids 2001, 20, 63
  4. Takagai, Y.; Igarashi, S. American Laboratory 2001, Jul, 551
  5. Sudo, T.; Igarashi, S. Talanta 1996, 43, 233 https://doi.org/10.1016/0039-9140(95)01748-8
  6. Oshite, S.; Furukawa, M.; Igarashi, S. Analyst 2001, 126, 703 https://doi.org/10.1039/b100114k
  7. Takagai, Y.; Igarashi, S. Analyst 2001, 126, 551 https://doi.org/10.1039/b102079j
  8. Igarashi, S.; Takahashi, A.; Ueki, Y.; Yamaguchi, H. Analyst 2000, 125, 797 https://doi.org/10.1039/b001581o
  9. Takahashi, A.; Ueki, Y.; Igarashi, S. Anal. Chim. Acta 1999, 387, 71 https://doi.org/10.1016/S0003-2670(99)00038-0
  10. Igarashi, S.; Ide, N.; Takagai, Y. Anal. Chim. Acta 2000, 424, 263 https://doi.org/10.1016/S0003-2670(00)01082-5
  11. Akiyama, R.; Takagai, Y.; Igarashi, S. Analyst 2004, 129, 396 https://doi.org/10.1039/b403228d
  12. Gupta, R.; Mauri, R.; Shinnar, R. Ind. Eng. Chem. Res. 1996, 35, 2360 https://doi.org/10.1021/ie950362t
  13. Takagai, Y.; Igarashi, S. Bull. Chem. Soc. Jpn. 2003, 76, 1595 https://doi.org/10.1246/bcsj.76.1595
  14. Takagai, Y.; Igarashi, S. Chem. Pharm. Bull. 2003, 51, 373 https://doi.org/10.1248/cpb.51.373
  15. Takagai, Y.; Igarashi, S. Analyst 2001, 17, i1323
  16. Ghiasvand, A. R.; Mohagheghzadeh, E. Anal. Sci. 2004, 20, 917 https://doi.org/10.2116/analsci.20.917
  17. Ghiasvand, A. R.; Shadabi, S.; Mohagheghzadeh, E.; Hashemi, P. Talanta In press
  18. Ghiasvand, A. R.; Moradi, F.; Sharghi, H.; Hasaninejad, A. R. Anal. Sci. In press
  19. Tas, E.; Cukurovali, A.; Kaya, M. J. Coord. Chem. 1998, 44, 109 https://doi.org/10.1080/00958979808022885
  20. Schrauzer, G. N.; Kohnle, J. Chem. Ber. 1964, 97, 3056 https://doi.org/10.1002/cber.19640971114
  21. Hamuryudan, E.; Bekaroglu, O. Chem. Ber. 1994, 127, 2483 https://doi.org/10.1002/cber.19941271219
  22. Gurol, I.; Ahsen, V.; Bekaroglu, O. J. Chem. Soc. Dalton Trans. 1992, 2283
  23. Kuse, S.; Motomizu, S.; Toei, K. Anal. Chim. Acta 1974, 70, 65 https://doi.org/10.1016/S0003-2670(01)82911-1
  24. Ghiasvand, A. R.; Ghadri, R.; Kakanejadifard, A. Talanta 2004, 62, 287 https://doi.org/10.1016/j.talanta.2003.07.011
  25. Willer, R. L. J. Org. Chem. 1985, 50, 5123 https://doi.org/10.1021/jo00225a029
  26. Khajehkoolaki, A. M. Sc. Thesis; Lorestan University: Khorram- Abad, Iran, 2004
  27. Shamsipur, M.; Ghiasvand, A. R.; Sharghi, H.; Naeimi, H. Anal. Chim. Acta 2000, 408, 271 https://doi.org/10.1016/S0003-2670(99)00873-9
  28. Holzbecher, Z.; Divis, L.; Kral, M.; Sucha, L.; Vlacil, F. Handbook of Organic Reagents in Inorganic Analysis, Ellis Horwood: Chichester, 1976

Cited by

  1. Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE) Using a pH-Responsive Fluorine-Based Surfactant vol.5, pp.3, 2015, https://doi.org/10.3390/met5031543
  2. ′-methylene ether vol.64, pp.12, 2008, https://doi.org/10.1107/S160053680803897X
  3. )-dione dioxime vol.64, pp.8, 2008, https://doi.org/10.1107/S1600536808021570
  4. -1,4-benzothiazine-2,3-dione dioxime dihydrate vol.64, pp.8, 2008, https://doi.org/10.1107/S1600536808023301
  5. Selective homogeneous liquid-liquid extraction and preconcentration of copper(II) into a micro droplet using a benzo-substituted macrocyclic diamide, and its determination by electrothermal atomic absorption spectrometry vol.168, pp.1-2, 2010, https://doi.org/10.1007/s00604-009-0268-6
  6. Complexation of (1Z, 2Z)-N′-1-,N′-2-dihydroxy-N-1-, N-2-dipyridin-2-ylethanedimidamide in mono and dinuclear Zn(II), Cd(II), Hg(II) and Sn(IV) complexes vol.61, pp.11, 2005, https://doi.org/10.1080/00958970701621217