DOI QR코드

DOI QR Code

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M. (Yunnan Astronomical Observatory, NAOC, Chinese Academy of Sciences) ;
  • LEE MYUNG GYONG (Astronomy Program, SEES, Seoul National University)
  • Published : 2005.06.01

Abstract

In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

Keywords

References

  1. Aharonian, F. A., et al., 2002, A&A, 384, L23 https://doi.org/10.1051/0004-6361:20020206
  2. Aharonian, F. A., et al., 2004, A&A, 421, 529 https://doi.org/10.1051/0004-6361:20035764
  3. Bai, J. M., & Lee, M. G., 2001, ApJ, 549, L173 https://doi.org/10.1086/319177
  4. Blandford, R. D., & Levinson, A., 1995, ApJ, 441, 79 https://doi.org/10.1086/175338
  5. Blazejowski, M., et al., 2000, ApJ, 545, 107 https://doi.org/10.1086/317791
  6. Brinkmann, et al., 1997, A&A, 319, 413
  7. Dermer, C. D., & Schlickeiser, R., 1993, ApJ, 416, 458 https://doi.org/10.1086/173251
  8. Fossati, G., Maraschi, L., Celotti, A., et al., 1998, MNRAS, 299,433 https://doi.org/10.1046/j.1365-8711.1998.01828.x
  9. Ghisellini, G., & Maraschi, L., 1989, ApJ, 430, 181
  10. Ghisellini, G., & Madau, P., 1996, MNRAS, 280, 67 https://doi.org/10.1093/mnras/280.1.67
  11. Hartman, R. C., et al., 2001, ApJ, 553, 683 https://doi.org/10.1086/320970
  12. Hartman, R. C., et al., 1999, ApJS, 123, 79 https://doi.org/10.1086/313231
  13. Holder, J., et al., 2003, ApJ, 583, L9 https://doi.org/10.1086/367816
  14. Konigl, A., 1981, ApJ, 243, 700 https://doi.org/10.1086/158638
  15. Kubo, H., et al., 1998, ApJ, 504, 693 https://doi.org/10.1086/306125
  16. Lister, M. L., 2003, in ASP Conf. Ser. 300, Radio Astronomy at the Fringe, ed. J. A. Zensus, M. H. Cohen, & E. Ros (San Francisco: ASP), 71
  17. Marscher, A. P., & Gear, W. K., 1985, ApJ, 298, 114 https://doi.org/10.1086/163592
  18. Mattox, J. T., et al., 1997, 481, 95 https://doi.org/10.1086/304039
  19. McNaron-Brown, K., et al., 1995, ApJ, 451, 575 https://doi.org/10.1086/176245
  20. Mukherjee, R., et al., 1999, ApJ, 527, 132 https://doi.org/10.1086/308057
  21. Mukherjee, R., et al., 1997, ApJ, 490, 116 https://doi.org/10.1086/304851
  22. O'Dea, C. P., 1998, PASP, 110, 493 https://doi.org/10.1086/316162
  23. O'Dea, C. P., Baum, S.A., & Stanghellini, C., 1991, ApJ, 380, 66 https://doi.org/10.1086/170562
  24. Reeves, J. N., & Turner, M. J. L., 2000, MNRAS, 316, 234 Processes in Astrophysics (New York: Wiley)
  25. Sambruna, R., 1997, A&AS, 487, 536
  26. Schonfelder V., et al., 2000, A&AS, 143, 145 https://doi.org/10.1051/aas:2000101
  27. Siemiginowska, A., et al., 2002, ApJ, 570, 543 https://doi.org/10.1086/339629
  28. Siemiginowska, A., et al., 2003, PASA, 20, 113 https://doi.org/10.1071/AS02052
  29. Sikora, M., Begelman, M., & Rees, M., 1994, ApJ, 421, 153 https://doi.org/10.1086/173633
  30. Sikora, M. et al., 2002, ApJ, 577, 78 https://doi.org/10.1086/342164
  31. Stanghellini, C., et al., 1998, A&AS, 131, 303 https://doi.org/10.1051/aas:1998270
  32. Stanghellini, C., et al., 2001, A&A, 377, 377 https://doi.org/10.1051/0004-6361:20011101
  33. Stickel, M., Meisenheimer, K., & Kuhr, H., 1994, A&AS, 105, 211
  34. Tavecchio, F., et al., 1998, ApJ, 509, 608 https://doi.org/10.1086/306526
  35. Thompson, D. J., et al., 1995, ApJs, 101, 259 https://doi.org/10.1086/192240
  36. Ulrich, M.-H., Maraschi, L., & Urry, C. M., 1997, ARA&A, 35, 455
  37. Urry, C. M., 1999, in ASP Conf. Ser. 159, BL Lac Phenomenon, ed. L.O. Takalo, A. Sillanpaa (San Francisco: ASP), p3
  38. Urry, C.M., et al., 1997, ApJ, 486, 799 https://doi.org/10.1086/304536
  39. Wagner, S. J., et al., 1995, A&A, 298, 688
  40. Wehrle, A.E., & Cohen, M. 1989, ApJ, 346, L69 https://doi.org/10.1086/185581
  41. Zdziarski, A. A. 1986, ApJ, 305, 45 https://doi.org/10.1086/164227
  42. Zhang, Y. F., Marscher, A. P., Aller, H. D., et al., 1994, ApJ, 432, 91 https://doi.org/10.1086/174551

Cited by

  1. Multifrequency study of GHz-peaked spectrum sources and candidates with the RATAN-600 radio telescope vol.544, 2012, https://doi.org/10.1051/0004-6361/201118506
  2. Gigahertz-peaked spectrum (GPS) galaxies and quasars vol.68, pp.3, 2013, https://doi.org/10.1134/S1990341313030036
  3. Possible γ-ray emission of radio intermediate AGN III Zw 2 and its implication on the evolution of jets in AGNs vol.10, pp.8, 2010, https://doi.org/10.1088/1674-4527/10/8/001