DOI QR코드

DOI QR Code

The Effect of Annealing Methods on Dopant Activation and Damage Recovery of Phosphorous ion Shower Doped Poly-Si

다결정 실리콘 박막 위에 P이온 샤워 도핑 후 열처리 방법에 따르는 도펀트 활성화 및 결함 회복에 관한 효과

  • Kim, Dong-Min (Department of Materials Science and Engineering, Hongik University) ;
  • Ro, Jae-Sang (Department of Materials Science and Engineering, Hongik University) ;
  • Lee, Ki-Yong (Samsung SDI CO., LTD.,)
  • 김동민 (홍익대학교 공과대학 신소재공학과) ;
  • 노재상 (홍익대학교 공과대학 신소재공학과) ;
  • 이기용 (㈜삼성SDI)
  • Published : 2005.02.01

Abstract

Ion shower doping with a main ion source of $P_2H_x$ using a source gas mixture of $PH_3/H_2$ was conducted on excimer-laser-annealed (ELA) poly-Si.The crystallinity of the as-implanted samples was measured using a UV-transmittance. The measured value using UV-transmittance was found to correlate well with the one measured using Raman Spectroscopy. The sheet resistance decreases as the acceleration voltage increases from 1kV to 15kV at the moderate doping conditions. It, however, increases as the acceleration voltage increases under the severe doping conditions. The reduction in carrier concentration due to electron trapping at uncured damage after activation annealing seems to be responsible for the rise in sheet resistance. Three different annealing methods were investigated in terms of dopant-activation and damage-recovery, such as furnace annealing, excimer laser annealing, and rapid thermal annealing, respectively.

Ion-Shower-Doping장비 및 $PH_/3M_2$혼합 가스를 사용하여 Phosphorous를 ELA방법으로 제조된 Poly-Si에 가속 전압 및 조사량을 변수로 이온 주입하였다. As-implanted된 시편의 결정도는 UV-transmittance spectroscopy를 사용하여 측정하였다. 이 때 UV-transmittance를 이용하여 측정한 값은 Raman spectroscopy를 이용해서 측정한 값과 서로 관련되어 있음을 알았다. 면 저항은 가속전압이 1kV에서 15kV까지 증가함에 따라 감소한다 그러나 가혹한 도핑조건하에서는 가속전압의 증가 시 면 저항이 증가한다. 이는 활성화 열처리 후 치유되지 않은 결함에 의해 전자가 포획되며 이에 따라 전하 운반자의 농도가 감소하는 때문이다. 활성화 열처리는 로열처리, RTA 열처리, ELA 열처리 등의 방법으로 수행하였고 열처리 방법에 따르는 도펀트의 활성화 및 결함의 회복의 거동을 연구하였다

Keywords

References

  1. Yasuyoshi Mishima and Michiko Takei, J. Appl. Phys. 75(10), 15 May 4933 (1994) https://doi.org/10.1063/1.356425
  2. Genshiro Kawachi, Takashi Aoyama et. al, Jpn. J. Appl. Phys., 28(12), DECEMBER, L2370-L2372 (1999)
  3. G. Kawachi, T. Aoyama et. al, J .Electrochem. Soc., 137(11), 3522 (1990) https://doi.org/10.1149/1.2086261
  4. P. K. Chu, S. B. Felch et. al, Solid State Technology, September 55 (1999)
  5. P. K. Chu, S. B. Felch et. al, Solid State Technology, October 77 (1999)
  6. Genshiro Kawachi,. Takashi Aoyama et. al, Jpn. J. Appl. Phys., 33 pp 2092-2099 Part 1, No. 4A, April (1994) https://doi.org/10.1143/JJAP.33.2092
  7. Y. Mishima, M. Takei, and N. Matsumoto, J. Appl. Phys., 74(12), 15, pp. 7114 (1993) https://doi.org/10.1063/1.355026
  8. Ching-Fa Yeh, Tai-Ju Chen, IEEE ELECTRON DEVICE LEITERS, 19(11), 432 (1998) https://doi.org/10.1109/55.728903
  9. Erin C. Jones, Nathan W. Cheung, IEEE TRANSACTIONS ON PLASMA SCIENCE, 25(1), 42 (1997) https://doi.org/10.1109/27.557484
  10. Kwon-Young Choi and Kee-Chan Park, Jpn. J. Appl. Phys., 37, Part 1, No. 3B, 1067-1070 (1998) https://doi.org/10.1143/JJAP.37.1067
  11. Seiki Ogura and Paul J. Tsang, IEEE TRANSACTIONS ON ELECTRON DEVICES, ED-27,(8), 1359 (1980)
  12. Ching-Fa Yeh and Tzung-Zu Yang, IEEE TRANSACTIONS ON ELECTRON DEVICES, 42(2), 307 (1995) https://doi.org/10.1109/16.370064
  13. Kwon-Young Choi, Hong-Seok Choi, and Min-Koo Han, Jpn. J. Appl. Phys., 36, Part 1, No. 3B, 1522-1524 (1997) https://doi.org/10.1143/JJAP.36.1522
  14. Kwon-Young Choi, Jong-Wook Lee, and Min-Koo Han, IEEE TRANSACTIONS ON ELECTRON DEVICES, 45(6), 1272 (1998) https://doi.org/10.1109/16.678541
  15. Alessandro Pecora, Fabio Massussi et. al, Jpn. J. Appl. Phys., 38, Part 1, No. 6A, 3475-3481 (1999) https://doi.org/10.1143/JJAP.38.3475
  16. J. Rechard Ayres, Stan D. Brotherton et. al, Jpn. J. Appl. Phys., 37, Part 1, No. 4A, 1801-1808 (1998). https://doi.org/10.1143/JJAP.37.1801